Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Statistical Methods For Detecting Causal Rare Variants And Analyzing Multiple Phenotypes, Xinlan Yang Jan 2018

Statistical Methods For Detecting Causal Rare Variants And Analyzing Multiple Phenotypes, Xinlan Yang

Dissertations, Master's Theses and Master's Reports

This dissertation includes two papers with each distributed in one chapter. To date, genome-wide association studies (GWAS) have identified a large number of common variants that are associated with complex diseases successfully. However, the common variants identified by GWAS only account for a small proportion of trait heritability. Many studies showed that rare variants could explain parts of the missing heritability. Since the well-developed common variant detecting methods are underpowered for rare variant association tests unless sample sizes or effect sizes are very large, investigation the roles of rare variants in complex diseases presents substantial challenges. In chapter 1, we …


A Model To Predict Concentrations And Uncertainty For Mercury Species In Lakes, Ashley Hendricks Jan 2018

A Model To Predict Concentrations And Uncertainty For Mercury Species In Lakes, Ashley Hendricks

Dissertations, Master's Theses and Master's Reports

To increase understanding of mercury cycling, a seasonal mass balance model was developed to predict mercury concentrations in lakes and fish. Results indicate that seasonality in mercury cycling is significant and is important for a northern latitude lake. Models, when validated, have the potential to be used as an alternative to measurements; models are relatively inexpensive and are not as time intensive. Previously published mercury models have neglected to perform a thorough validation. Model validation allows for regulators to be able to make more informed, confident decisions when using models in water quality management. It is critical to quantify uncertainty; …


Application Of Remote Sensing And Machine Learning Modeling To Post-Wildfire Debris Flow Risks, Priscilla Addison Jan 2018

Application Of Remote Sensing And Machine Learning Modeling To Post-Wildfire Debris Flow Risks, Priscilla Addison

Dissertations, Master's Theses and Master's Reports

Historically, post-fire debris flows (DFs) have been mostly more deadly than the fires that preceded them. Fires can transform a location that had no history of DFs to one that is primed for it. Studies have found that the higher the severity of the fire, the higher the probability of DF occurrence. Due to high fatalities associated with these events, several statistical models have been developed for use as emergency decision support tools. These previous models used linear modeling approaches that produced subpar results. Our study therefore investigated the application of nonlinear machine learning modeling as an alternative. Existing models …


Wildfire Emissions In The Context Of Global Change And The Implications For Mercury Pollution, Aditya Kumar Jan 2018

Wildfire Emissions In The Context Of Global Change And The Implications For Mercury Pollution, Aditya Kumar

Dissertations, Master's Theses and Master's Reports

Wildfires are episodic disturbances that exert a significant influence on the Earth system. They emit substantial amounts of atmospheric pollutants, which can impact atmospheric chemistry/composition and the Earth’s climate at the global and regional scales. This work presents a collection of studies aimed at better estimating wildfire emissions of atmospheric pollutants, quantifying their impacts on remote ecosystems and determining the implications of 2000s-2050s global environmental change (land use/land cover, climate) for wildfire emissions following the Intergovernmental Panel on Climate Change (IPCC) A1B socioeconomic scenario.

A global fire emissions model is developed to compile global wildfire emission inventories for major atmospheric …


Joint Analysis Of Multiple Phenotypes In Association Studies, Xiaoyu Liang Jan 2018

Joint Analysis Of Multiple Phenotypes In Association Studies, Xiaoyu Liang

Dissertations, Master's Theses and Master's Reports

Genome-wide association studies (GWAS) have become a very effective research tool to identify genetic variants of underlying various complex diseases. In spite of the success of GWAS in identifying thousands of reproducible associations between genetic variants and complex disease, in general, the association between genetic variants and a single phenotype is usually weak. It is increasingly recognized that joint analysis of multiple phenotypes can be potentially more powerful than the univariate analysis, and can shed new light on underlying biological mechanisms of complex diseases. Therefore, developing statistical methods to test for genetic association with multiple phenotypes has become increasingly important. …


Offline And Online Density Estimation For Large High-Dimensional Data, Aref Majdara Jan 2018

Offline And Online Density Estimation For Large High-Dimensional Data, Aref Majdara

Dissertations, Master's Theses and Master's Reports

Density estimation has wide applications in machine learning and data analysis techniques including clustering, classification, multimodality analysis, bump hunting and anomaly detection. In high-dimensional space, sparsity of data in local neighborhood makes many of parametric and nonparametric density estimation methods mostly inefficient.

This work presents development of computationally efficient algorithms for high-dimensional density estimation, based on Bayesian sequential partitioning (BSP). Copula transform is used to separate the estimation of marginal and joint densities, with the purpose of reducing the computational complexity and estimation error. Using this separation, a parallel implementation of the density estimation algorithm on a 4-core CPU is …


Joint Analysis For Multiple Traits, Zhenchuan Wang Jan 2018

Joint Analysis For Multiple Traits, Zhenchuan Wang

Dissertations, Master's Theses and Master's Reports

This dissertation includes three papers with each distributed in one chapter.

In chapter 1, we proposed an Adaptive Weighting Reverse Regression (AWRR) method to test association between multiple traits and rare variants in a genomic region. AWRR is robust to the directions of effects of causal variants and is also robust to the directions of association of traits. Using extensive simulation studies, we compared the performance of AWRR with canonical correlation analysis (CCA), Single-TOW, and the Weighted Sum Reverse Regression (WSRR). Our results showed that, in all of the simulation scenarios, AWRR is consistently more powerful than CCA. In most …


Statistical Methods For Analyzing Multivariate Phenotypes And Detecting Rare Variant Associations, Huanhuan Zhu Jan 2018

Statistical Methods For Analyzing Multivariate Phenotypes And Detecting Rare Variant Associations, Huanhuan Zhu

Dissertations, Master's Theses and Master's Reports

This dissertation includes four papers with each distributed in one chapter.

In chapter 1, I compared the performance of eight multivariate phenotype association tests. The motivation to conduct this power comparison paper is as follows. For nearly 15 years, genome-wide association studies (GWAS) have been widely used to identify genetic variants associated with human diseases and traits. GWAS typically investigate genetic variants for a predefined phenotype, thus fail to identify weak but important effects. In recent years, many multivariate association tests have been developed. However, there is a lack of comprehensive summary of such kinds of approaches. To fill this …


Algorithms For Reconstruction Of Gene Regulatory Networks From High -Throughput Gene Expression Data, Wenping Deng Jan 2018

Algorithms For Reconstruction Of Gene Regulatory Networks From High -Throughput Gene Expression Data, Wenping Deng

Dissertations, Master's Theses and Master's Reports

Understanding gene interactions in complex living systems is one of the central tasks in system biology. With the availability of microarray and RNA-Seq technologies, a multitude of gene expression datasets has been generated towards novel biological knowledge discovery through statistical analysis and reconstruction of gene regulatory networks (GRN). Reconstruction of GRNs can reveal the interrelationships among genes and identify the hierarchies of genes and hubs in networks. The new algorithms I developed in this dissertation are specifically focused on the reconstruction of GRNs with increased accuracy from microarray and RNA-Seq high-throughput gene expression data sets.

The first algorithm (Chapter 2) …