Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Physics

Institution
Publication Year
Publication
Publication Type
File Type

Articles 61 - 90 of 881

Full-Text Articles in Physical Sciences and Mathematics

Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar Jun 2022

Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar

Physics

The rising interest in quantum computing has led to new quantum systems being developed and researched. Among these are trapped neutral atoms which have several desirable features and may be configured and operated on using lasers in an optical lattice. This work describes the development of a new data acquisition system for use in tuning lasers near the precise hyperfine transition frequencies of Rb 87 atoms, a crucial step in the functionality of a neutral atom trap. This improves on previous implementations that were deprecated and limited in laser frequency sweep range. Integration into the experiment was accomplished using an …


Investigating The Thermodynamics And Seismic Profile Of The Europan Hydrosphere Through Pure-Water Modeling And Saltwater Experiments, Samantha Rosenfeld Jun 2022

Investigating The Thermodynamics And Seismic Profile Of The Europan Hydrosphere Through Pure-Water Modeling And Saltwater Experiments, Samantha Rosenfeld

Honors Theses

We explore the properties of the hydrosphere on Europa involving both a modeling technique and experimental methods. We perform a computational analysis of the thermodynamic properties for an ideal, pure-water Europan ice shell using a Python programming framework called SeaFreeze. We create four models assuming surface temperatures of either 50 K or 140 K and ice shell thicknesses of either 3 km or 30 km. We observe mostly linear trends for the density and seismic wave velocities with respect to depth and find that surface temperature has the greatest effect on the models. Simultaneously, we experimentally investigate the phase diagram …


A Performance Analysis Of The Belle Ii Detector, John Stacy May 2022

A Performance Analysis Of The Belle Ii Detector, John Stacy

Honors Theses

The Belle II experiment has recently (2018) started data taking at the SuperKEKB electron-positron collider in Tsukuba, Japan. Detector performance studies are necessary to understand early data and prepare for more complex analyses. This study of the proton detection efficiency of the Belle II detector compares real and simulated data to find discrepancies with the intention to provide useful information for detector and calibration experts to better gauge detector performance. It also attempts to improve the characterization of proton identification efficiency at low momenta, which performs poorly under the current fitting model. This helps analysts exploring final states that include …


Monte Carlo Study Of Lepton Flavor Universality Violation In B Decays With Belle Ii Simulation, Sakul Mahat May 2022

Monte Carlo Study Of Lepton Flavor Universality Violation In B Decays With Belle Ii Simulation, Sakul Mahat

Honors Theses

Belle II, the first super B-Factory experiment, is designed to make precise measurements of weak interaction parameters and search for New Physics beyond the Standard Model of particle physics. The Standard Model of particle physics is a theory that classifies all known elementary particles and describes three of the four known fundamental forces in the universe. Physics beyond the Standard Model that addresses the theoretical developments needed to explain the deficiencies in the Standard Model is often referred to as New Physics. One of the assumptions of the Standard Model is that the couplings of particles that mediate the weak …


Stem Club, Camden Jones, Erica Gesner, Amber Gadeken May 2022

Stem Club, Camden Jones, Erica Gesner, Amber Gadeken

Honors Expanded Learning Clubs

The goal of this club is to introduce various topics stemming from different fields in science. We hope to excite the students about science and show them how important it is to their everyday lives. This club also aims to provide free education to underserved communities.


Investigating Gluonic Operators In Coordinate Space, Wayne Henry Morris Iii May 2022

Investigating Gluonic Operators In Coordinate Space, Wayne Henry Morris Iii

Physics Theses & Dissertations

In this dissertation, a method of extracting gluon momentum distributions inside hadrons, and particularly nucleons, is developed. In general, the utility and application of performing calculations in coordinate space at the operator level is discussed, and its application to the method of pseudodistributions in the lattice extraction of parton distributions. An introduction to the background field method and other techniques used in the calculation of corrections to gluon operators are provided. Then, an outline of the calculation of the uncontracted gluon bilocal operator at one-loop is given, and the result thereof. Using the result for the gluon bilocal operator restricted …


Can Women Science?: A Climate Survey To Address Gender Inequity In Wwu’S Geology And Physics/Astronomy Departments, Raina Shaw Apr 2022

Can Women Science?: A Climate Survey To Address Gender Inequity In Wwu’S Geology And Physics/Astronomy Departments, Raina Shaw

WWU Honors College Senior Projects

This research study aims to assess and analyze gendered differences in student perceptions of the environment and climate in WWU’s Geology and Physics & Astronomy Departments. Underlying hypotheses involve the perceptions, comfort, and discrimination of women and gender minorities in male-dominated spaces. We also theorize that these gendered differences will increase with seniority and more so within physics than in geology. In addition to testing these hypotheses, we sought to collect relevant student feedback on factors that influence their perceptions of the climate & environment, to identify areas for future study and formal program assessment. From 56 respondents, this study …


First-Principles-Based Modeling Of Energy Converting Properties Of Conventional And Emerging Ferroelectrics, Maggie Kingsland Mar 2022

First-Principles-Based Modeling Of Energy Converting Properties Of Conventional And Emerging Ferroelectrics, Maggie Kingsland

USF Tampa Graduate Theses and Dissertations

Ferroelectric materials are a type of multifunctional material that exhibit spontaneous polarization reversable by the application of an electric field. They are used in many technologies such as ferroelectric RAM (FeRAM), piezoelectric devices, RFID chips, and capacitors. However, the most commonly used ferroelectrics are often made with rare, expensive elements and are not environmentally friendly. For example, many prototypical ferroelectrics contain elements such as lead, zirconium, and titanium. As technology grows more advanced, there is a need to discover or manufacture cheaper ferroelectrics and to make them less impactful on human health and the earth as a whole. We set …


Using Network Analysis To Contrast Three Models Of Student Forum Discussions, Hannah N. Benston Jan 2022

Using Network Analysis To Contrast Three Models Of Student Forum Discussions, Hannah N. Benston

Browse all Theses and Dissertations

There is much research about how actors and events in social networks affect each other. In this research, three network models were created for discussion forums in three semesters of undergraduate general physics courses. This study seeks to understand what social network measures are most telling of a online forum classroom dynamic. That is, I wanted to understand more about things like what students are most central to the networks and whether this is consistent across different network models. I also wanted to better understand how students may or may not group together. What relationships (student to student, student to …


Impact Of Proton And Neutron Irradiation On Carrier Transport Properties In Ga2o3, Andrew C. Silverman Jan 2022

Impact Of Proton And Neutron Irradiation On Carrier Transport Properties In Ga2o3, Andrew C. Silverman

Honors Undergraduate Theses

This project studies the properties of minority charge carriers in beta gallium oxide (β -Ga2O3). The behavior of minority carriers is of high importance as it greatly affects conduction and consequently device performance. Cathodoluminescence (CL) spectroscopy and EBIC (Electron Beam Induced Current) are the main experimental techniques used to study minority carrier behavior.

High energy radiation affects minority carrier properties through damage to the material and through the production of carrier traps that reduce the conductivity and mobility of the material. In this investigation, we study the effects of various kinds of high energy radiation on …


3-D Printed Arduino Powered Drone, Michael Floccare Jan 2022

3-D Printed Arduino Powered Drone, Michael Floccare

Senior Honors Projects

With the 3D technology available today creating something in a lab has never been easier. Using 3D printers, the body of a drone is created and printed using a combination of programs. With a body created using PLA filament the drone is durable and light weight. The drone’s flight system and controller are programmed with the built-in software from Arduino. Adding the Arduino nano to the drone body then gives the drone capabilities to fly.


The Effects Of "Sticky Stuff" On The Spin Rate And Break Of A Baseball Pitch, Natalie Dale Jan 2022

The Effects Of "Sticky Stuff" On The Spin Rate And Break Of A Baseball Pitch, Natalie Dale

Scripps Senior Theses

In June 2021, Major League Baseball cracked down on the use of foreign substances by pitchers on the ball (Castrovince, 2021a). It is believed the sticky substances give the pitchers an unfair advantage over batters since they increase spin rate, consequently, through the Magnus Effect, creating more movement or “break” in the pitch, making it harder to hit. There are existing gaps in empirical research on this topic, thus the goal of this project was to determine the effect the banned substances have on the spin rate and related break of the pitches. By using pitch tracking technology, two types …


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


Establishing A Machine Learning Framework For Discovering Novel Phononic Crystal Designs, Drew Feltner Jan 2022

Establishing A Machine Learning Framework For Discovering Novel Phononic Crystal Designs, Drew Feltner

Browse all Theses and Dissertations

A phonon is a discrete unit of vibrational motion that occurs in a crystal lattice. Phonons and the frequency at which they propagate play a significant role in the thermal, optical, and electronic properties of a material. A phononic material/device is similar to a photonic material/device, except that it is fabricated to manipulate certain bands of acoustic waves instead of electromagnetic waves. Phononic materials and devices have been studied much less than their photonic analogues and as such current materials exhibit control over a smaller range of frequencies. This study aims to test the viability of machine learning, specifically neural …


The Effects Of An Ultrafast Pulsed Laser On Ybco Thin Film Circuit Transients, Matthew L. Rustad Jan 2022

The Effects Of An Ultrafast Pulsed Laser On Ybco Thin Film Circuit Transients, Matthew L. Rustad

Browse all Theses and Dissertations

Terahertz (THz) frequency light has shown promise for a wide variety of applications due to its material characterization and imaging capabilities. Its nondestructive nature coupled with its submillimeter spatial resolution provides the most value for terahertz light as an imaging tool. The application of terahertz technology has been limited by a lack of novel and powerful sources. It has been shown that that Yttrium Barium Copper Oxide (YBCO), a type II superconductor, has certain properties that would allow YBCO to be an effective source for THz light. Recent microwave work has shown that when a persistent supercurrent is placed on …


Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou Jan 2022

Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou

Physics Faculty Publications

Explorations of the violation of null energy condition (NEC) in cosmology could enrich our understanding of the very early universe and the related gravity theories. Although a fully stable NEC violation can be realized in the “beyond Horndeski” theory, it remains an open question whether a violation of the NEC is allowed by some fundamental properties of UV-complete theories or the consistency requirements of effective field theory (EFT). We investigate the tree-level perturbative unitarity for stable NEC violations in the contexts of both Galileon and “beyond Horndeski” genesis cosmology, in which the universe is asymptotically Minkowskian in the past. We …


Observation Of Azimuth-Dependent Suppression Of Hadron Pairs In Electron Scattering Off Nuclei, S. J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks, M. J. Amaryan, W. R. Armstrong, H. Atac, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, F. Bossù, S. Boiarinov, K.-Th. Brinkmann, W. J. Briscoe, D. Bulumulla, V. D. Burkert, R. Capobianco, D. S. Carman, A. Celentano, V. Chesnokov, T. Chetry, G. Ciullo, P. L. Cole, M. Contalbrigo, G. Constantini, A. D' Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, L. El Fassi, P. Eugenio, S. Fegan, A. Filippi, G. Gavalian, Y. Ghandilyan, G. P. Gilfoyle, A. A. Golubenko, G. Gosta, R. W. Gothe, K. A. Griffioen, M. Guidal, M. Hattawy, T. B. Hayward, D. Heddle, A. Hobart, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. S. Jo, R. Johnston, K. Joo, S. Joosten, D. Keller, A. Khanal, M. Khandaker, W. Kim, A. Kripko, V. Kubarovsky, V. Lagerquist, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, K. Livingston, I.J.D. Macgregor, D. Marchand, V. Mascagna, B. Mckinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. I. Mokeev, P. Moran, C. Munoz Camacho, K. Neupane, D. Nguyen, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, W. Phelps, N. Pilleux, D. Pocanic, O. Pogorelko, M. Pokhrel, J. Poudel, J. W. Price, Y. Prok, B. A. Raue, T. Reed, M. Ripani, G. Rosner, F. Sabatié, C. Salgado, A. Schmidt, R. A. Schumacher, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, P. Simmerling, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, H. Voskanyan, E. Voutier, X. Wei, R. Wishart, M. H. Wood, N. Zachariou, Z. W. Zhao, V. Ziegler, M. Zurek Jan 2022

Observation Of Azimuth-Dependent Suppression Of Hadron Pairs In Electron Scattering Off Nuclei, S. J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks, M. J. Amaryan, W. R. Armstrong, H. Atac, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, F. Bossù, S. Boiarinov, K.-Th. Brinkmann, W. J. Briscoe, D. Bulumulla, V. D. Burkert, R. Capobianco, D. S. Carman, A. Celentano, V. Chesnokov, T. Chetry, G. Ciullo, P. L. Cole, M. Contalbrigo, G. Constantini, A. D' Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, L. El Fassi, P. Eugenio, S. Fegan, A. Filippi, G. Gavalian, Y. Ghandilyan, G. P. Gilfoyle, A. A. Golubenko, G. Gosta, R. W. Gothe, K. A. Griffioen, M. Guidal, M. Hattawy, T. B. Hayward, D. Heddle, A. Hobart, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. S. Jo, R. Johnston, K. Joo, S. Joosten, D. Keller, A. Khanal, M. Khandaker, W. Kim, A. Kripko, V. Kubarovsky, V. Lagerquist, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, K. Livingston, I.J.D. Macgregor, D. Marchand, V. Mascagna, B. Mckinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. I. Mokeev, P. Moran, C. Munoz Camacho, K. Neupane, D. Nguyen, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, W. Phelps, N. Pilleux, D. Pocanic, O. Pogorelko, M. Pokhrel, J. Poudel, J. W. Price, Y. Prok, B. A. Raue, T. Reed, M. Ripani, G. Rosner, F. Sabatié, C. Salgado, A. Schmidt, R. A. Schumacher, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, P. Simmerling, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, H. Voskanyan, E. Voutier, X. Wei, R. Wishart, M. H. Wood, N. Zachariou, Z. W. Zhao, V. Ziegler, M. Zurek

Physics Faculty Publications

We present the first measurement of dihadron angular correlations in electron-nucleus scattering. The data were taken with the CLAS detector and a 5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets. Relative to deuterium, the nuclear yields of charged-pion pairs show a strong suppression for azimuthally opposite pairs, no suppression for azimuthally nearby pairs, and an enhancement of pairs with large invariant mass. These effects grow with increased nuclear size. The data are qualitatively described by the gibuu model, which suggests that hadrons form near the nuclear surface and undergo multiple scattering in nuclei. These results show …


Beam-Recoil Transferred Polarization In K+Y Electroproduction In The Nucleon Resonance Region With Clas12, D. S. Carman, A. D'Angelo, L. Lanza, V. I. Mokeev, K. P. Adhikari, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, S. Boiarinov, V. Ziegler Jan 2022

Beam-Recoil Transferred Polarization In K+Y Electroproduction In The Nucleon Resonance Region With Clas12, D. S. Carman, A. D'Angelo, L. Lanza, V. I. Mokeev, K. P. Adhikari, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, S. Boiarinov, V. Ziegler

Physics Faculty Publications

Beam-recoil transferred polarizations for the exclusive electroproduction of K + Λ and K + Σ0 final states from an unpolarized proton target have been measured using the CLAS12 spectrometer at Jefferson Laboratory. The measurements at beam energies of 6.535 and 7.546 GeV span the range of four-momentum transfer Q2 from 0.3 to 4.5 GeV2 and invariant energy W from 1.6 to 2.4 GeV, while covering the full center-of-mass angular range of the K+. These new data extend the existing hyperon polarization data from CLAS in a similar kinematic range but from a significantly larger dataset. …


Fast Statistical Methods For The Global Qcd Analysis Of The Proton Structure, Xiaoxian Jing Dec 2021

Fast Statistical Methods For The Global Qcd Analysis Of The Proton Structure, Xiaoxian Jing

Physics Theses and Dissertations

Parton distribution functions (PDFs) quantify probabilities to find partons (quarks and gluons) in a hadron as a function of the fraction x of the hadron’s momentum carried by the parton at a given energy scale. PDFs play a critical role in precision tests of the Standard Model in Higgs boson production and other electroweak processes at the Large Hadron Collider (LHC), and in searches for physics beyond the Standard Model. PDFs are obtained by the global QCD analysis, which fits theoretical predictions to experimental measurements. PDF fitting and post-analysis are computationally intensive. This dissertation discusses fast statistical methods for the …


Rigid Aggregation Of Inclusions Embedded In Quasi 2d Fluids, Natalie Xochitl Ryan Dec 2021

Rigid Aggregation Of Inclusions Embedded In Quasi 2d Fluids, Natalie Xochitl Ryan

Physics

Diffusion is a transport process common in several biological systems. In this process particles of different species mix together through random (stochastic) motion at molecular length scales. Diffusion in fluids is unique as the coupling of the flow and fluid have been found to produce giant concentration fluctuations. The molecular length scale of these concentration fluctuations are magnitudes larger than the movement of the particles themselves, earning them the title “giant”. The diffusion of particles in bio-membranes displays a combination of 2D and 3D hydrodynamic properties; the movements of the particles are restricted to the plane of the membrane and …


Embedded Charge Distributions In Electron Irradiated Polymers – Pulsed Electroacoustic Method Reproducibility And Calibration, Zachary Gibson, Jr Dennison, Ryan Hoffmann Oct 2021

Embedded Charge Distributions In Electron Irradiated Polymers – Pulsed Electroacoustic Method Reproducibility And Calibration, Zachary Gibson, Jr Dennison, Ryan Hoffmann

Physics Student Research

The pulsed electroacoustic (PEA) method has been used to measure the embedded charge distributions in electron irradiated polymers. The PEA method allows for non-destructive direct measurements of embedded charge distributions in dielectric materials. Samples of polyether-etherketone (PEEK) and polytetrafluoroethylene (PTFE) of 125 μm or 250 μm thickness were tested after irradiation with either a 50 keV or 80 keV electron beam. The reproducibility of the PEA method and the experimental conditions were studied by: (i) measuring each sample multiple times in a given mounting configuration, (ii) re-measuring each sample after repositioning them in the PEA test fixture, and (iii) measuring …


A History Of Physics At Otterbein University, David G. Robertson Sep 2021

A History Of Physics At Otterbein University, David G. Robertson

Faculty Books

This is an informal history of the Physics Department at Otterbein, including the story of the natural sciences prior to the founding of the department in 1908.


Advancement In Infrared Optics Through The Exploration Of Solution Derived Arsenic Selenide (As2se3) Thin Films, Annabella Orsini Jul 2021

Advancement In Infrared Optics Through The Exploration Of Solution Derived Arsenic Selenide (As2se3) Thin Films, Annabella Orsini

Physics and Astronomy Summer Fellows

There are great opportunities for advancement in the realm of infrared (IR) optics through the use of chalcogenide glasses (ChGs). The development of IR optics using ChGs is important for applications in search and rescue operations, firefighting efforts, medical imaging, and satellites. Instead of creating bulky, expensive, single crystal IR glasses, ChGs can be deposited as thin films by solution derived (SD) spin or dip coating. Our research takes a multidisciplinary approach to investigate ChGs thin films using physics, chemistry, optics, and materials science.


54fe(D,P)55fe Single Neutron Transfer Presentation, Matthew Quirin, Raymond Saunders Jul 2021

54fe(D,P)55fe Single Neutron Transfer Presentation, Matthew Quirin, Raymond Saunders

Physics and Astronomy Presentations

During our summer research at the John D Fox Laboratory, we used the 9 MV Tandem van de Graaff accelerator and the Super Enge Split-Pole Spectrograph to make measurements of the neutron transfer reaction 54Fe(d,p) 55Fe to observe and explore excited states of 55Fe and shell structure beyond the magic number N=28. We have created momentum spectra and angular distribution plots of the protons from the reaction which will be analyzed to determine the angular momentum values of states and single-neutron energies in 55Fe in an effort to better understand nuclear structure.


54fe(D,P)55fe Single Neutron Transfer, Matthew Quirin, Raymond Saunders Jul 2021

54fe(D,P)55fe Single Neutron Transfer, Matthew Quirin, Raymond Saunders

Physics and Astronomy Summer Fellows

During our summer research at the John D Fox Laboratory, we used the 9 MV Tandem van de Graaff accelerator and the Super Enge Split-Pole Spectrograph to make measurements of the neutron transfer reaction 54Fe(d,p) 55Fe to observe and explore excited states of 55Fe and shell structure beyond the magic number N=28. We have created momentum spectra and angular distribution plots of the protons from the reaction which will be analyzed to determine the angular momentum values of states and single-neutron energies in 55Fe in an effort to better understand nuclear structure.


Interactive Physics Display: Air Cannon, Marina Smeltzer, Sydney Hosokawa, Jordan Nguyen, Jessica Ouyang Jun 2021

Interactive Physics Display: Air Cannon, Marina Smeltzer, Sydney Hosokawa, Jordan Nguyen, Jessica Ouyang

Mechanical Engineering

The San Luis Obispo Botanical Garden (SLOBG) is a non-profit organization that provides a place for visitors to connect with and explore nature. The sponsors from SLOBG sought an interactive physics display to be implemented in their children’s garden that will educate children and adult visitors about physics concepts in a welcoming and comfortable atmosphere. The research done showed that customers are looking for a “wow” factor with the display to surprise and engage them. Patents showed the design and build of interactive playground equipment. Government reports described the curriculum for the target audience and also outlined the safety precautions …


Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette May 2021

Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette

Student Research Projects

This report covers the development of the pressure-temperature control system used in the production of small superconducting RF cavities for particle accelerators. To test the validity of the created program, a model for the process was created and tested. The model was used to fine tune the control system before integrating it into the lab. The end goal of the control system is to measure the pressure inside of a deposition vacuum chamber, convert that pressure to a temperature, and use that temperature in tandem with a PID controller to control the current passing though a molybdenum filament which is …


Fundamental Aspects Of Black Holes, Jacob Fisher Ciafre May 2021

Fundamental Aspects Of Black Holes, Jacob Fisher Ciafre

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

The literature study here seeks to present the foundations of black hole physics in General Relativity. The report includes a discussion of the Kerr black hole metric, black hole entropy, particle creation, the laws of black hole mechanics, and a bilinear mass formula for the Kerr-Newman black hole solution.


Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu Apr 2021

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu

Senior Theses

An experiment was designed and conducted to explore the relationship between thermal conductivity with free electrons in metal. In the experiment, copper, iron, aluminum, and titanium rods with close diameters were used to carry out the experiment. Each rod was heated up by a heat unit at one end while cooled on the other end with a heat sink to maintain a steady state. DC current was applied to rods in the direction along, as well as against, the heat flow. Thermal conductivities were measured in these two situations for each rod. Results showed electrons do dominate thermal flow inside …


Nb3Sn Coating Of Complex Srf Cavity Structures, Jayendrika Tiskumara, Uttar Pudasaini, Grigory Eremeev, Charlie Reece, Jean Delayen Apr 2021

Nb3Sn Coating Of Complex Srf Cavity Structures, Jayendrika Tiskumara, Uttar Pudasaini, Grigory Eremeev, Charlie Reece, Jean Delayen

College of Sciences Posters

In the modern SRF research, Thin films coated niobium cavities are used for the low cost and increased quality factor. Among the potential thin film materials applied on the niobium, performances demonstrated by the Nb3Sn cavities makes this material attractive for SRF accelerator applications giving higher critical temperature and higher accelerating gradients. While the majority of research efforts are currently focused on the development of elliptical single-cell and multi-cell cavities, the potential of this material is evident to other cavity types, which may have complex geometries. We are working towards the development of Nb3Sn-coated Half-wave resonator and twin …