Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Machine learning

Institution
Publication Year
Publication
Publication Type

Articles 61 - 64 of 64

Full-Text Articles in Physical Sciences and Mathematics

Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami Jan 2018

Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami

Faculty Publications

We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t-distributed stochastic neighboring ensemble (t-SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and …


Machine Learning In Xenon1t Analysis, Dillon A. Davis, Rafael F. Lang, Darryl P. Masson Aug 2017

Machine Learning In Xenon1t Analysis, Dillon A. Davis, Rafael F. Lang, Darryl P. Masson

The Summer Undergraduate Research Fellowship (SURF) Symposium

In process of analyzing large amounts of quantitative data, it can be quite time consuming and challenging to uncover populations of interest contained amongst the background data. Therefore, the ability to partially automate the process while gaining additional insight into the interdependencies of key parameters via machine learning seems quite appealing. As of now, the primary means of reviewing the data is by manually plotting data in different parameter spaces to recognize key features, which is slow and error prone. In this experiment, many well-known machine learning algorithms were applied to a dataset to attempt to semi-automatically identify known populations, …


Problems In Graph-Structured Modeling And Learning, James Atwood Jul 2017

Problems In Graph-Structured Modeling And Learning, James Atwood

Doctoral Dissertations

This thesis investigates three problems in graph-structured modeling and learning. We first present a method for efficiently generating large instances from nonlinear preferential attachment models of network structure. This is followed by a description of diffusion-convolutional neural networks, a new model for graph-structured data which is able to outperform probabilistic relational models and kernel-on-graph methods at node classification tasks. We conclude with an optimal privacy-protection method for users of online services that remains effective when users have poor knowledge of an adversary's behavior.


Classifying Pattern Formation In Materials Via Machine Learning, Lukasz Burzawa, Shuo Liu, Erica W. Carlson Aug 2016

Classifying Pattern Formation In Materials Via Machine Learning, Lukasz Burzawa, Shuo Liu, Erica W. Carlson

The Summer Undergraduate Research Fellowship (SURF) Symposium

Scanning probe experiments such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM) on strongly correlated materials often reveal complex pattern formation that occurs on multiple length scales. We have shown in two disparate correlated materials that the pattern formation is driven by proximity to a disorder-driven critical point. We developed new analysis concepts and techniques that relate the observed pattern formation to critical exponents by analyzing the geometry and statistics of clusters observed in these experiments and converting that information into critical exponents. Machine learning algorithms can be helpful correlating data from scanning probe experiments to theoretical models …