Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 2311 - 2340 of 4588

Full-Text Articles in Physical Sciences and Mathematics

Theoretical Approaches To The Characterization Of Water, Aqueous Interfaces, And Improved Sampling Of Protein Conformational Changes, Alexis J. Lee Aug 2012

Theoretical Approaches To The Characterization Of Water, Aqueous Interfaces, And Improved Sampling Of Protein Conformational Changes, Alexis J. Lee

University of New Orleans Theses and Dissertations

Methods to advance the understanding of water and other aqueous systems are devel- oped. This work falls into three areas: The creation of better interaction potentials for water, improved methods for sampling configurational space, and the applications of these methods to understand systems of interest. Charge transfer has been shown by ab initio methods to be important in the water–water and water–ion interactions. A model for treating charge transfer in liquid water and aqueous systems is presented in this manuscript. The model is called Discrete Charge Transfer (DCT) and is based on the commonly-used TIP4P/2005 model, which represents the charge …


Long-Range Ordered Carbon Clusters: A Crystalline Material With Amorphous Building Blocks, Lin Wang, Bingbing Liu, Hui Li, Wenge Yang, Yang Ding, Stanislav V. Sinogeikin, Yue Meng, Zhenxian Liu, Xiao Cheng Zeng, Wendy L. Mao Aug 2012

Long-Range Ordered Carbon Clusters: A Crystalline Material With Amorphous Building Blocks, Lin Wang, Bingbing Liu, Hui Li, Wenge Yang, Yang Ding, Stanislav V. Sinogeikin, Yue Meng, Zhenxian Liu, Xiao Cheng Zeng, Wendy L. Mao

Xiao Cheng Zeng Publications

Solid-state materials can be categorized by their structures into crystalline (having periodic translation symmetry), amorphous (no periodic and orientational symmetry), and quasi-crystalline (having orientational but not periodic translation symmetry) phases. Hybridization of crystalline and amorphous structures at the atomic level has not been experimentally observed. We report the discovery of a long-range ordered material constructed from units of amorphous carbon clusters that was synthesized by compressing solvated fullerenes. Using x-ray diffraction, Raman spectroscopy, and quantum molecular dynamics simulation, we observed that, although carbon-60 cages were crushed and became amorphous, the solvent molecules remained intact, playing a crucial role in maintaining …


Reactions Of Methyl Perfluoroalkyl Ethers With Isopropyl Alcohol: Experimental And Theoretical Studies, Howard Knachel, Vladimir Benin, Chadwick Barklay, Janine C. Birkbeck, Billy D. Faubion, William E. Moddeman Aug 2012

Reactions Of Methyl Perfluoroalkyl Ethers With Isopropyl Alcohol: Experimental And Theoretical Studies, Howard Knachel, Vladimir Benin, Chadwick Barklay, Janine C. Birkbeck, Billy D. Faubion, William E. Moddeman

Chemistry Faculty Publications

The reaction of an isomeric mixture of the methyl perfluoroalkyl ether, C4F9OCH3 (Novec-7100), in the presence of isopropyl alcohol (IPA) and/or water has been studied by measuring the rate of product formation using an ion-selective electrode (ISE) for fluoride ion, Karl Fisher coulometric titrations for water, and 1H and 19F NMR spectroscopy for product identification and rate studies. The results showed the methyl perfluoroalkyl ether to be very stable with products forming at the rate of ∼1 ppm per year at a laboratory temperature of 20 °C. Measurements over the temperature range of 6° to 100 °C were made on …


Environmental Implications And Applications Of Nanomaterials, Priyanka Bhattacharya Aug 2012

Environmental Implications And Applications Of Nanomaterials, Priyanka Bhattacharya

All Dissertations

Recent advances in material science and nanotechnology have given rise to a myriad of developments, while in the meantime call for research into the impacts of nanomaterials on the environment and human health. Although considerable progress has been made in the past decade concerning the behavior of nanomaterials in biological systems, such understanding is critically lacking with respect to the fate of nanomaterials in ecosystems.
Accordingly, this dissertation addresses the interactions between nanomaterials and algae--the major constituent of the aquatic food chain (Part I, Chapter two), and exploits the physicochemistry of nanoscaled synthetic dendritic polymers for environmental applications, especially for …


Experimental And Theoretical Studies In Nuclear Magnetic Resonance, John D. Persons Aug 2012

Experimental And Theoretical Studies In Nuclear Magnetic Resonance, John D. Persons

Department of Chemistry: Dissertations, Theses, and Student Research

Nuclear Magnetic Resonance (NMR) has proven to be an excellent tool to probe the structure of molecules by gaining insight into nuclear interactions. Used in conjunction with theoretical calculations, NMR has the potential to elucidate these nuclear interactions and how they affect structure, bonding and dynamics on a molecular scale. The first two projects presented herein study the peroxide explosive hexamethylene triperoxide diamine (HMTD). In the first project, we use the characteristics of the solid-state NMR lineshape to determine the 14N quadrupole coupling constant (CQ). The second project uses multi-dimensional solution-state NMR and chiral shift reagents …


Experimental And Theoretical Studies In Solid-State Nuclear Magnetic Resonance, Monica N. Kinde Aug 2012

Experimental And Theoretical Studies In Solid-State Nuclear Magnetic Resonance, Monica N. Kinde

Department of Chemistry: Dissertations, Theses, and Student Research

Solid-state nuclear magnetic resonance (SSNMR) has proven to be a powerful tool for probing molecular structure and dynamics. Deuterium SSNMR is particularly useful due to the presence of anisotropic interactions whose motional averaging contributes structural and dynamical insight. The magnitude and type of molecular motion can be determined from analysis of solid echo deuterium lineshapes and/or relaxation studies. This work uses various applications of solid-state NMR as well as ab initio and density functional computational methods to study three different areas of physical chemistry: biophysical chemistry, materials science and fundamental concepts of physical chemistry. The first project addressed the dynamics …


Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li Aug 2012

Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li

Graduate Theses and Dissertations

The bottom-up colloidal synthesis opened up the possibility of finely tuning and tailoring the semiconductor nanocrystals. Numerous recipes were developed for the preparation of colloidal semiconductor nanocrystals, especially the traditional quantum dots. However, due to the lack of thorough understanding to those systems, the synthesis chemistry is still on the empirical level. CdS quantum dots synthesis in non-coordinating solvent were taken as a model system to investigate its molecular mechanism and formation process, ODE was identified as the reducing agent for the preparation of CdS nanocrystals, non-injection and low-temperature synthesis methods developed. In this model system, we not only proved …


Derivative Couplings With Built-In Electron-Translation Factors: Application To Benzene, Shervin Fatehi, Joseph E. Subotnik Jul 2012

Derivative Couplings With Built-In Electron-Translation Factors: Application To Benzene, Shervin Fatehi, Joseph E. Subotnik

Chemistry Faculty Publications and Presentations

Derivative couplings are the essential quantities at the interface between electronic-structure calculations and nonadiabatic dynamics. Unfortunately, standard approaches for calculating these couplings usually neglect electronic motion, which can lead to spurious electronic transitions. Here we provide a general framework for correcting these anomalies by incorporating perturbative electron-translation factors (ETFs) into the atomic-orbital basis. For a range of representative organic molecules, we find that our ETF correction is often small but can be qualitatively important, especially for few-atom systems or highly symmetric molecules. Our method entails no additional computational cost, such that ETFs are “built-in,” and it is equivalent to a …


X-Ray Absorption Fine Structure And X-Ray Excited Optical Luminescence Studies Of One-Dimensional Nanomaterials, Lijia Liu Jul 2012

X-Ray Absorption Fine Structure And X-Ray Excited Optical Luminescence Studies Of One-Dimensional Nanomaterials, Lijia Liu

Electronic Thesis and Dissertation Repository

One dimensional nanomaterials have attracted extensive attention in recent years due to their superior electrical, optical, mechanical and chemical properties compared to their bulk counterparts. In this thesis, electronic structure and optical properties of three types of nanomaterials are investigated using synchrotron based X-ray absorption spectroscopy: X-ray absorption fine structure (XAFS) and X-ray excited optical luminescence (XEOL).

Si nanowire arrays are synthesized using electroless chemical etching, and coated with platinum and gold nanoparticles. The interaction between metal nanoparticles and the nanowire substrate is investigated using X-ray absorption near-edge structure (XANES). The luminescence properties of thermally oxidized Si nanostructures, such as …


Capacitively Coupled Radio-Frequency Discharges In Nitrogen At Low Pressures, L. L Alves, L. Marques, C. D Pintassilgo, W. Wattieaux, Et. Es-Sebbar, J. Berndt, E. Kovačević, N. Carrasco, L. Boufendi, G. Cernogora Jul 2012

Capacitively Coupled Radio-Frequency Discharges In Nitrogen At Low Pressures, L. L Alves, L. Marques, C. D Pintassilgo, W. Wattieaux, Et. Es-Sebbar, J. Berndt, E. Kovačević, N. Carrasco, L. Boufendi, G. Cernogora

Dr. Et-touhami Es-sebbar

This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56 MHz frequency, 0.1–1 mbar pressures and 2–30 W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an …


Detection Of Pml/Rarî± Fusion Gene Using Gold Nanopaticles Modified Electrode By Chronocoulometry, Li-Man Wang, Li-Qing Lin, Shao-Huang Weng, Xin-Hua Lin, Yuan-Zhong Chen Jun 2012

Detection Of Pml/Rarî± Fusion Gene Using Gold Nanopaticles Modified Electrode By Chronocoulometry, Li-Man Wang, Li-Qing Lin, Shao-Huang Weng, Xin-Hua Lin, Yuan-Zhong Chen

Journal of Electrochemistry

potential. The sulfydryl modified probe was immobilized onto surface of gold nanoparticles via Au-S covalent bond and hybridized with complementary target DNA sequences, then the DNA sensor was fabricated for the detection of PML/RARα fusion gene by chronocoulometry in acute promyelocytic leukemia (APL). Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) were used to characterize the surface morphology of gold nanoparticles and the constructing process of sensor. With hexaammineruthenium(Ⅲ) chloride (RuHex) as a novel electrochemical indicator, the chronocoulometric DNA biosensor was employed to monitor artificial APL PML/RARα fusion gene fragment.Experimental results showed that the gold nanoparticles amplified the detection …


Preparation And Characterization Of Prussian Blue Modified Nanoelectrode, Wei Wang, Bao-Fa Su, Dong-Ping Zhan Jun 2012

Preparation And Characterization Of Prussian Blue Modified Nanoelectrode, Wei Wang, Bao-Fa Su, Dong-Ping Zhan

Journal of Electrochemistry

The Pt nanoelectrodes were fabricated by using a laser-based pipet puller and the recessed nanoelectrodes were prepared by etching of disk Pt nanoelectrodes wtih high frequency ac voltage. Prussian blue microcrystal was synthesized electrochemically on the both disk and recessed Pt nanoelectrodes. The strength of mechanical adhesion for the Prussian blue microcrystal on the nanoelectrode was enhanced. A novel method for the controllable synthesis of single particle is proposed, which has potential applications in modified electrodes and single particle electrocatalysis.


Novel Molten-Salt Electrolysis Processes Towards Low-Carbon Metallurgy, Wei Xiao, Hua Zhu, Hua-Yi Yin, De-Hua Wang Jun 2012

Novel Molten-Salt Electrolysis Processes Towards Low-Carbon Metallurgy, Wei Xiao, Hua Zhu, Hua-Yi Yin, De-Hua Wang

Journal of Electrochemistry

This review focuses on recent developments in molten-salt electrolytic metallurgical processes with respect to 1) high-efficiency metallurgical technologies via electrolytic reduction of solid oxides in molten chlorides and 2) zero-carbon-footprint electrochemical splitting metallurgical technologies. Initiating with an introduction on dynamic solid/solid/liquid three-phrase interlines electrochemistry for electrochemical reduction of solid cathode, the former aspect is discussed in terms of facilitating mass transfer throughout solid cathode, one-step production of functional alloy powders with the assistance of under-potential electroreduction of active metals and near-net-shape production of metal/alloy components. Whilst the latter is summarized by introducing some zero-carbon molten-salt electrolytic technologies including electro-splitting of …


Methodological Significance Of "Property-Activity Relationship" For Catalyst Studies, Jun-Tao Lu, Li Xiao, De-Li Wang, Yu-Bao Sun, Yan-Ge Suo, Lin Zhuang Jun 2012

Methodological Significance Of "Property-Activity Relationship" For Catalyst Studies, Jun-Tao Lu, Li Xiao, De-Li Wang, Yu-Bao Sun, Yan-Ge Suo, Lin Zhuang

Journal of Electrochemistry

Instead of attempting the structure-activity relationship (SAR), which is commonly regarded as the core problem for catalyst studies, this paper highlights the methodological significance of “property-activity relationship (PAR)”. The “property” here refers to an index (such as the adsorption energy of an intermediate) or a group of indexes reflecting the behavior of a catalyst which interacts with reactants or intermediates, and is a bridge between structure and activity. Because property is related to activity more directly than structure to activity, PAR should be simpler, less difficult and, therefore, more feasible to be accessed than SAR. Once the key property is …


Simple Analysis And Possible Solutions Of The Unusual Interfacial Reactions In Li-S Batteries, Xin-Ping Ai, Yu-Liang Cao, Han-Xi Yang Jun 2012

Simple Analysis And Possible Solutions Of The Unusual Interfacial Reactions In Li-S Batteries, Xin-Ping Ai, Yu-Liang Cao, Han-Xi Yang

Journal of Electrochemistry

Rechargeable Li-S batteries are a promising power source with realizable energy densities several times higher than current Li-ion batteries. However, the capacity utilization and cycling stability of the existing Li-S technologies are still insufficient for battery applications. The causes for the electrochemical instability of this redox system arise probably from the changes in the surface structures and electrochemical microenvironments of the Li anode and sulfur cathode during charge-discharge reactions, which includes the frustrated electron transfer in the sulfur-carbon interface, the dissoluble diffusion of the polysulfide intermediates, and the shuttle reaction inbetween the sulfur and Li electrodes. To deal with these …


Protonization Of Amino Functional Groups Confined In Nanochannels, Hong-Li Gao, Kai-Lin Zhou, Chen Wang, Su-Juan Li, Hui Zhang, Xing-Hua Xia Jun 2012

Protonization Of Amino Functional Groups Confined In Nanochannels, Hong-Li Gao, Kai-Lin Zhou, Chen Wang, Su-Juan Li, Hui Zhang, Xing-Hua Xia

Journal of Electrochemistry

Protonization process is the key step of acid-base reaction and occurs in many biological processes. Study of the protonization process of molecules and/or functional groups in confined conditions would assist understanding in the acid-base theory and confinement effect of biomolecules. In this paper, we developed a novel approach to study protonization of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes using an Au film electrochemical detector sputtered at the end of the nanochannels. The protonization status of the surface functional groups in nanochannels can change the surface charges and further modulate the …


Application Of First Principles Calculations In Anode Materials For Lithium Ion Batteries, Tian-Ran Zhang, Dai-Xin Li, Si-Qi Yang, Zhan-Liang Tao, Jun Chen Jun 2012

Application Of First Principles Calculations In Anode Materials For Lithium Ion Batteries, Tian-Ran Zhang, Dai-Xin Li, Si-Qi Yang, Zhan-Liang Tao, Jun Chen

Journal of Electrochemistry

First principles calculations play an important role in the study and development of new materials for lithium batteries. In this paper, we review the application of first principles calculations in the design of anode materials, including the modeling of the interaction of lithium in the anode materials, capacity, voltage, electrochemical reaction process, diffusion, rate capability, the relationship between the structure and properties, and the experimental phenomena interpreting. Based on the discussions, we emphasize on the importance of first principles calculations and demonstrate their requirement for further development.


The Electrocatalytic Performance Of Pd Catalysts Supported On Pvp Modified Mwcnts For Formic Acid Oxidation, Jing Zhang, Xiao Zhao, Chang-Peng Liu, Wei Xing Jun 2012

The Electrocatalytic Performance Of Pd Catalysts Supported On Pvp Modified Mwcnts For Formic Acid Oxidation, Jing Zhang, Xiao Zhao, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

In this paper the MWCNTs were modified by Poly (N-vinyl-2-pyrrolidone) (PVP) to support Pd nanoparticles, which were used as the catalyst for formic acid electrooxidation. And the performance of Pd/PVP-MWCNTs catalysts was studied by electrochemical measurements. The observations from Fourier transforms infrared spectrometer (FTIR) and transmission electron microscopy (TEM) illustrated that the Pd nanoparticles with a small size and narrow size distribution were highly dispersed on PVP-MWCNT support. Therefore, the Pd/PVP-MWCNTs catalysts showed excellent catalytic activity for formic acid electrooxidation.


Preparation And Electrochemical Performance Of Tio2/Gns Nanocomposite As Anode Materials For Lithium-Ion Batteries, Lin-Lin Qin, Huan Zhang, Xiao-Jing Liu, Jian-Hui Xu, Yi-Ning Shi, Ming-Sen Zheng, Quan-Feng Dong Jun 2012

Preparation And Electrochemical Performance Of Tio2/Gns Nanocomposite As Anode Materials For Lithium-Ion Batteries, Lin-Lin Qin, Huan Zhang, Xiao-Jing Liu, Jian-Hui Xu, Yi-Ning Shi, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

The honeycomb-like porous TiO2/graphenes (TiO2/GNs) nanocomposite was prepared by a reflux method. SEM and TEM results showed that nanosized anatase TiO2 (about 5~10 nm) were dispersed uniformly on the surface of the GNs. The TiO2/GNs composite showed excellent rate and cycling performance: A stable charge capacity of 169.5 mAh?g-1 was obtained at 30C, and can restore to 241.7 mAh?g-1 while current went back to 1C. The stable charge capacity of TiO2/GNs nanocomposite electrode up to 201.9 mAh?g-1 was achieved at 10C in the first cycle, and could be maintained at 181.4 mAh?g-1 after 300 times of cycling.


Comments On Internal Alternating Current Resistance Test Standard And Methods Of Lithium-Ion Batteries, Ya-Li Zhang, Sen Xin, Yu-Guo Guo, Li-Jun Wan Jun 2012

Comments On Internal Alternating Current Resistance Test Standard And Methods Of Lithium-Ion Batteries, Ya-Li Zhang, Sen Xin, Yu-Guo Guo, Li-Jun Wan

Journal of Electrochemistry

The sustainable development of energy and environment is one of the most influential issues of this century. Batteries, especially secondary batteries are important for powering out daily life. However, in many practical applications, such as in electric vehicles and hybrid electric vehicles, batteries should be used in packs and the performance consistency of each battery in the pack should be taken into consideration. As one of the performance parameters being used to characterize the battery consistency, internal resistance is of great importance to the industrial fabrication and the use of batteries. Currently, internal resistance tests of secondary batteries, such as …


An Overview Of Electrode Materials In Microbial Fuel Cells, Su-Qin Ci, Na Wu, Zhen-Hai Wen, Jing-Hong Li Jun 2012

An Overview Of Electrode Materials In Microbial Fuel Cells, Su-Qin Ci, Na Wu, Zhen-Hai Wen, Jing-Hong Li

Journal of Electrochemistry

Microbial fuel cells (MFCs) are devices that can directly convert organic chemical energy into electrical energy with microbial as catalysts. MFCs are a promising bio-electrochemical system with the potential to degrade organic sewage and produce electricity. This article supplies a critical and comprehensive review for the electrode materials concerning about anode and cathode in MFCs, including the fabrications, functional modifications and surface constructions of electrode materials, as well as their applications in MFCs. Additionally, the existing problems of electrode materials in current MFCs have been demonstrated in order to provide the guideline for exploring the next-generation electrode materials for MFCs.


Preparation And Electrochemical Performance Of Tin@Mno Fibers By Coaxial Electrospinning, Chao-Qun Shang, Hai-Yan Yang, Xin-Hong Zhou, Zhong-Lei Man, Peng-Xian Han, Jian-Hua Yao, Yu-Long Duan, Guang-Lei Cui Jun 2012

Preparation And Electrochemical Performance Of Tin@Mno Fibers By Coaxial Electrospinning, Chao-Qun Shang, Hai-Yan Yang, Xin-Hong Zhou, Zhong-Lei Man, Peng-Xian Han, Jian-Hua Yao, Yu-Long Duan, Guang-Lei Cui

Journal of Electrochemistry

In this study, the titanium nitride (TiN) @manganese oxide (MnO) core-shell structured fibers were prepared by the coaxial electrospinning using tetrabutyl titanate and manganese acetylacetonate as raw materials, and polyvinylpyrrolidone (PVP) as the template. And then the fibers were annealed in ammonia to finally obtain the coaxial TiN@MnO fibers. XRD, FESEM, TEM, EDX and physical adsorption instrument were used to characterize the phase structure, morphology, composition and specific surface areas and pore sizes of the samples. It was demonstrated that the as-synthesized TiN@MnO fibers possessed coaxial structure with a surface area of 16 m2?g-1. As indicated from the cyclic voltammetry …


On The Molecular Mechanism Of Electron Transfer Of Cytochrome C Modulated By Gold Nanoparticles In Nano-Sandwich Architecture, Shou-Rui Lin, Li-Xu Wang, Xiu-E Jiang, Li-Ping Guo Jun 2012

On The Molecular Mechanism Of Electron Transfer Of Cytochrome C Modulated By Gold Nanoparticles In Nano-Sandwich Architecture, Shou-Rui Lin, Li-Xu Wang, Xiu-E Jiang, Li-Ping Guo

Journal of Electrochemistry

The effects of adsorbed gold nanoparticles on the surface-enhanced infrared absorption (SEIRA) difference spectra of redox-induced cytochrome (Cyt) c in AuNPs/Cyt c/Au sandwich architecture were monitored by SEIRA spectroscopy. The results indicated that the intensity of SEIRA difference spectrum for the vibration of the heme was significantly increased due to the adsorption of gold nanoparticles on the Cyt c. This was induced by the electron transfer between the heme and the gold nanoparticles, which also promoted electron transfer of adsorbed protein. This study suggested a new technique for optimizing the electrochemical property of adsorbed protein.


Synthesis Of Spherical Ni3S4 By Solvothermal Method As Supercapacitor Electrodes, Qing-Na Huan, Li-Fang Jiao, Qing-Hong Wang, Hong-Mei Du, Jia-Qin Yang, Wen-Xiu Peng, Yi-Jing Wang, Hua-Tang Yuan Jun 2012

Synthesis Of Spherical Ni3S4 By Solvothermal Method As Supercapacitor Electrodes, Qing-Na Huan, Li-Fang Jiao, Qing-Hong Wang, Hong-Mei Du, Jia-Qin Yang, Wen-Xiu Peng, Yi-Jing Wang, Hua-Tang Yuan

Journal of Electrochemistry

The Ni3S4 microspheres have been synthesized via a facile solvothermal method. The crystal structure and surface morphology are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microspherical Ni3S4 exhibits good electrochemical capacitance validated by electrochemical measurements. The specific capacities of 1120.6 F.g-1 at 0.5 A.g-1 and 433.4 F.g-1 at 4 A.g-1 with the capacitance retention of 89.37 % and 84.88 % were obtained after 1000 cycles, respectively. The electrochemical reaction is expected due to the transformation of Ni(OH)2 and NiOOH based on the XRD, XPS and CV analysis results.


Performnces Of Lini0.5Mn0.5O2 Thin Film Electrodes Prepared By Pulsed Laser Deposition, Yun-Hai Wan, Guo-Liang Yuan, Hui Xia Jun 2012

Performnces Of Lini0.5Mn0.5O2 Thin Film Electrodes Prepared By Pulsed Laser Deposition, Yun-Hai Wan, Guo-Liang Yuan, Hui Xia

Journal of Electrochemistry

The all-solid-state thin-film Li-ion batteries with high energy density, power density and temperature stability are the ideal power sources for microelectronic devices. Developing new thin-film cathodes with large specific capacity is the key to their practical applications. The LiNi0.5Mn0.5O2 with a layered structure has a higher reversible capacity and better structural stability compared with traditional LiCoO2 cathode material. In this work, the LiNi0.5Mn0.5O2 thin film cathodes were prepared by pulsed laser deposition. The effects of substrate material and temperature on the microstructure, surface morphology and composition of the thin films were investigated. Rate capability and cycle performance of LiNi0.5Mn0.5O2 thin-film …


Ionization Photophysics And Rydberg Spectroscopy Of Diacetylene, M. Schwell, Y. Benilan, N.. Fray, M.-C. Gazeau, Et. Es-Sebbar, F.-G. Levrel, N. Campion, S. Leach Jun 2012

Ionization Photophysics And Rydberg Spectroscopy Of Diacetylene, M. Schwell, Y. Benilan, N.. Fray, M.-C. Gazeau, Et. Es-Sebbar, F.-G. Levrel, N. Campion, S. Leach

Dr. Et-touhami Es-sebbar

Photoionization of diacetylene was studied using synchrotron radiation over the range 8–24 eV, with photoelectron-photoion coincidence (PEPICO) and threshold photoelectron–photoion coincidence (TPEPICO) techniques. Mass spectra, ion yields, total and partial ionization cross-sections were measured. The adiabatic ionization energy of diacetylene was determined as IEad = (10.17 ± 0.01) eV, and the appearance energy of the principal fragment ion C4H+ as AE = (16.15 ± 0.03) eV. Calculated appearance energies of other fragment ions were used to infer aspects of dissociation pathways forming the weaker fragment ions , C3H+, and C2H+. Structured autoionization features observed in the PEPICO spectrum of diacetylene …


High-Pressure Study Of Molecular Solids And 1d Nanostructures By Vibrational Spectroscopy And Synchrotron X-Ray Diffraction, Zhaohui Dong Jun 2012

High-Pressure Study Of Molecular Solids And 1d Nanostructures By Vibrational Spectroscopy And Synchrotron X-Ray Diffraction, Zhaohui Dong

Electronic Thesis and Dissertation Repository

Pressure plays a critical role in regulating the structures and properties of materials. Since Percy Bridgeman was recognized by the 1946 Nobel Prize for his contribution to high-pressure physics, high-pressure research as an interdisciplinary area has attracted extensive attentions. Nowadays, the high-pressure research involves broad frontier areas, such as chemistry, physics, biology, material and earth science. For instance, brand new classes of inorganic materials of unusual stoichiometries and crystal structures, with wide range of optical, mechanical, electronic and magnetic properties, have been produced at high pressure. Pressure-induced structural transformations between crystalline and amorphous materials, as well as among insulators, conductors …


Concentration Effects And Ion Properties Controlling The Fractionation Of Halides During Aerosol Formation, Marcelo I. Guzman, Richa R. Athalye, Jose M. Rodriguez Jun 2012

Concentration Effects And Ion Properties Controlling The Fractionation Of Halides During Aerosol Formation, Marcelo I. Guzman, Richa R. Athalye, Jose M. Rodriguez

Chemistry Faculty Publications

During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO(2), NaNO(3), NaClO(4), and NaIO(4). The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of …


Maxwell's Equations, Part Vii, David W. Ball Jun 2012

Maxwell's Equations, Part Vii, David W. Ball

Chemistry Faculty Publications

This is the seventh (and perhaps last) installment of a series of columns on Maxwell’s equations of electrodynamics. In previous columns (available at Spectroscopy’s website, www.spectroscopyonline.com/The+Baseline+Column), we have covered history, the background of the first three equations, and the mathematics underlying them. Here we will present the fourth equation, and after reaching it we’ll see how light is described in terms of these four mathematical expressions.


Patent: Methods Of Treating Fgf21-Associated Disorders, Brian R. Boettcher, Shari L. Caplan, Douglas S. Daniels, Bernhard Hubert Geierstanger, Norio Hamamatsu, Stuart Licht, Andreas Loew, Stephen Craig Weldon May 2012

Patent: Methods Of Treating Fgf21-Associated Disorders, Brian R. Boettcher, Shari L. Caplan, Douglas S. Daniels, Bernhard Hubert Geierstanger, Norio Hamamatsu, Stuart Licht, Andreas Loew, Stephen Craig Weldon

Chemistry Faculty Publications

The invention relates to the identification of new polypeptide and protein variants of fibroblast growth factor 21 (FGF21) that have improved pharmaceutical properties. Also disclosed are methods for treating FGF21-associated disorders, includ ing metabolic conditions.