Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 50 of 50

Full-Text Articles in Physical Sciences and Mathematics

The Double Pendulum: Construction And Exploration, Benjamin J. Knudson Jul 2012

The Double Pendulum: Construction And Exploration, Benjamin J. Knudson

Physics

The exploration of a nonlinear mechanical system, the Double Pendulum, a physical pendulum on the end of a physical pendulum, using analytic and experimental approaches. Also included discussion of the design and construction of the Double Pendulum apparatus to work with Vernier LabPro and LoggerPro. The apparatus outputs live data of the angles to a LoggerPro which collects and produces time evolution graphs as well as a corresponding animation lending itself to comparison with theoretical models. Normal mode frequencies are found both analytically and experimentally for the the general (real) double pendulum. Examples of both simple (periodic) and complex (chaotic) …


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


Studying Beam Dynamics At Cesrta, Matthew (Matt) Randazzo Jun 2012

Studying Beam Dynamics At Cesrta, Matthew (Matt) Randazzo

Physics

The Cornell Electron Storage Ring Test Accelerator (CesrTA) is a particle accelerator acting primarily as a laboratory for studying accelerator physics under a variety of conditions. Here, the experimental program on electron cloud effects is one of the highest-priority research and development projects during the International Linear Collider (ILC) Technical Design Phase 1. These electron clouds are of particular concern for the design of future low emittance rings like those in the ILC because of how they can adversely affect the performance of accelerators. The impact of electron clouds on the dynamics of individual bunches along a train known as …


Gaussian Beam Steering On A Target Plane Via High Speed Orthogonal Mirror-Mounted Galvanometers, Keith Gresiak Jun 2012

Gaussian Beam Steering On A Target Plane Via High Speed Orthogonal Mirror-Mounted Galvanometers, Keith Gresiak

Physics

No abstract provided.


Paleomagnetism And Investigation Of 40 Ma Lavas, Liverpool Range, New South Whales, Australia, Nathan M. Padilla Oct 2011

Paleomagnetism And Investigation Of 40 Ma Lavas, Liverpool Range, New South Whales, Australia, Nathan M. Padilla

Physics

The main focus of this project is the continued study of a reversal of the earth’s magnetic field recorded from lavas in the Liverpool Range of New South Whales, Australia. This reverse-to-normal transition, recently dated at ~40 Ma, was first reported in Nature in 1986. [2] In March 2011 some 200+ cores were drilled from several sections about the volcanic range—Jemmy’s Creek, Bald Hill, Rock Creek, Yarraman, and Coolah Tops Road. Here we focus on paleomagnetic findings from samples drilled from the most extensive section, that being along the trail near Jemmy’s Creek. Results from alternating field demagnetization show the …


Exploring Methods For Earthquake Prediction: The Effects Of Water On The Flow Of Stress-Activated Electric Currents In Igneous Rocks, Aaron M. Jahoda, Friedemann T. Freund Aug 2011

Exploring Methods For Earthquake Prediction: The Effects Of Water On The Flow Of Stress-Activated Electric Currents In Igneous Rocks, Aaron M. Jahoda, Friedemann T. Freund

STAR Program Research Presentations

Much of the devastation and damage of earthquakes can be attributed to the fact that they occur suddenly and without much warning, which limits the ability of people to evacuate and/or properly prepare. One method, however, that might be used to predict seismic events is the generation of electric currents in rocks when stresses are applied. It is observed in this research that the application of direct force onto samples of igneous rock causes the rocks to generate a measurable current, which is attributed to positive-hole charges moving within the oxygen sub-lattice. Because large and changing forces are acted upon …


Symbolic Quantum Circuit Simplification In Sympy, Matthew Curry Jun 2011

Symbolic Quantum Circuit Simplification In Sympy, Matthew Curry

Physics

In the field of quantum information science, one can design a series of quantum logic operations known as a circuit. Circuits are the basis for quantum computations in quantum computing. As circuits will most likely be designed from a logical standpoint, there could exist mathematical redundancies which will lead to a larger circuit than necessary. These redundancies are computationally expensive, and there is a need for them to be found and eliminated to simplify the circuit. We present our research on finding the rules for simplifying circuits and its implementation in SymPy.


Projected Pinhole Diffraction, David Moore Jun 2011

Projected Pinhole Diffraction, David Moore

Physics

The goal of this experiment was to observe the effects of passing light through a pinhole, more specifically, to observe the interference and diffraction that occurs due to the pinhole and to successfully achieve CCD camera recording of a projected diffraction pattern from a pinhole. This experiment involved the diffraction of a laser incident upon a 100-mm diameter circular aperture. The diffraction pattern is then projected using a 100-mm focal length plano-convex lens. The lens allows for the pattern to be magnified and stretched a few focal lengths past the lens where it can be then viewed using a CCD …


Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand Jun 2011

Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand

Physics

Neutral atom quantum computing is a promising avenue toward the realization of a physical quantum computer. The diffraction pattern formed by laser light immediately behind a circular aperture can be used as optical atomic dipole traps, and has the potential to be scaled up to create a two dimensional array of individually addressable qubit sites. In working towards experimental demonstration of the dipole traps, we are constructing a MOT. The function of the MOT is to cool and trap 87Rb in a localized cloud in our vacuum chamber, which will be used to load the dipole traps. One critical …


Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel Jun 2011

Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel

Master's Theses

Spacecraft pointing accuracy and structural longevity requirements often necessitate auxiliary vibration dissipation mechanisms. However, temperature sensitivity and material degradation limit the effectiveness of traditional damping techniques in space. Robust particle damping technology offers a potential solution, driving the need for microgravity characterization. A 1U cubesat satellite presents a low cost, low risk platform for the acquisition of data needed for this evaluation, but severely restricts available mass, volume, power and bandwidth resources. This paper details the development of an instrument subject to these constraints that is capable of capturing high resolution frequency response measurements of highly nonlinear particle damper dynamics.


Guateca: A Carbon Footprint Viability Analysis, Kyle Reynolds May 2011

Guateca: A Carbon Footprint Viability Analysis, Kyle Reynolds

Physics

This report seeks to analyze the carbon footprint of the Guateca summer school program in 2011 run by Dr. Pete Schwartz. Through use of the listed carbon footprints of various substances in a Materials Engineering database, the CO2 emissions associated with various technologies and practices to be implemented by Guateca in the village of San Pablo, Guatemala are calculated and compared to estimated emissions of alternative standard practices that are currently in use or might be in the near future. The results are varied, and while many are heavily reliant on how well they can be implemented, most of …


Construction And Improvement Of A Scheffler Reflector And Thermal Storage Device, Jason Rapp Nov 2010

Construction And Improvement Of A Scheffler Reflector And Thermal Storage Device, Jason Rapp

Physics

We constructed and successfully tested a 2 m2 parabolic dish solar concentrator (Scheffler Concentrator) to focus sunlight onto a stationary target. Present efforts are to decrease the construction complexity and cost of the concentrator. In order to store solar heat, we also constructed and are testing a thermal storage device made of sand (for thermal mass), and pumice (for insulation). Preliminary tests indicate thermal retention times of many hours. Present efforts are to increase accessible power, and structural integrity.


Cryogenic Refrigeration For Quantum Voltage Standards, Jeffrey Power Jun 2010

Cryogenic Refrigeration For Quantum Voltage Standards, Jeffrey Power

Physics

Currently the world maintains the voltage standard using a Josephson junction which makes use of the properties of superconductors and quantum tunneling. Current technology requires liquid He to cool the Josephson junctions to ~4 K to allow them to function as superconductors. He (l) is expensive and price is geographically dependent. Here we investigated using a cryocooler, modeled after a Gifford-McMahon Refrigerator, that could run on 120V (or a standard outlet) and used gaseous He as the working fluid –a less geographically dependent and inexpensive alternative to He (l). We found that indeed a standard outlet gaseous He compressor could …


Investigation Of Track-Cluster Matching Vs Track-Cell Matching In The Alice Detector At Cern, Kevin Coulombe Jun 2010

Investigation Of Track-Cluster Matching Vs Track-Cell Matching In The Alice Detector At Cern, Kevin Coulombe

Physics

The ALICE (A Large Ion Collider Experiment) Experiment is a detector that is one of four stationed at the CERN Large Hadron Collider. The goal of ALICE is to investigate the properties of the quark-gluon plasma, a new form of matter which only existed during the first microsecond of the Universe. ALICE measures the aftermath of the collision of two lead ions. Some information detected is the trajectory of the particles traveling through the tracking detectors and energy deposited in the calorimeters. Both the tracks and energy are required to determine the identities of the various particles as they travel …


The Usage Of Smartphones In The Calculation Of Relativistic Time Dilation Effects At Meager Velocities, Leland Gregory Jun 2010

The Usage Of Smartphones In The Calculation Of Relativistic Time Dilation Effects At Meager Velocities, Leland Gregory

Physics

The theories of special and general relativity postulate that events are not simultaneous for different observers, and that different observer's times tick at different rates depending on relative velocity and the magnitude of the gravitational field they are in. This project seeks to design a program for use with smartphones that will calculate this change in time, in real time, and keep track of the discrepancies in time experienced between the observer and a stationary point on the surface of the earth.


Construction And Enhancement Of Stereo Vacuum Tube Amplifier With Precision Machined Enclosure, Nikolaus (Nik) Glazar May 2010

Construction And Enhancement Of Stereo Vacuum Tube Amplifier With Precision Machined Enclosure, Nikolaus (Nik) Glazar

Physics

The purpose of this project was to build a high fidelity tube amplifier from a kit, and machine a beautiful enclosure to house the electronics. Improvements were made to the circuit, and the amplifier was then tested for audio performance.


An Analysis Of The Quasi Biennial Oscillation, Ozone And Thermal Damping, Kevin Jauregui May 2010

An Analysis Of The Quasi Biennial Oscillation, Ozone And Thermal Damping, Kevin Jauregui

Physics

No abstract provided.


Gamma-Ray Spectroscopy: Meteorite Samples And The Search For 98tc, Kristopher L. Merolla Feb 2010

Gamma-Ray Spectroscopy: Meteorite Samples And The Search For 98tc, Kristopher L. Merolla

Physics

The focus of this project is low-count-level gamma-ray spectroscopy on meteorite samples in search of a particular isotope of Technetium (98Tc), which according to stellar theory, should be present in the universe. The spectral lines for 99Tc have, however, been observed in S-, M-, and N- type stars, which makes finding 98Tc created naturally a possibility, and thus a search can be justified.


Developing A B-Jet Tagging Algorithm For Alice: Lessons From Cdf, Paul Chester-John Carlson Dec 2009

Developing A B-Jet Tagging Algorithm For Alice: Lessons From Cdf, Paul Chester-John Carlson

Physics

This paper compares the detectors and algorithms developed and used at both A Large Ion Collider Experiment (ALICE) and the Collider Detector at Fermilab (CDF). We found that the detectors share many similarities in data collection and analysis methods and that by adapting algorithms that have been tested and used at CDF, ALICE could augment its existing algorithms. The algorithms formed from this adaptation will help ALICE isolate b-jets quickly and explore the quark-gluon plasma, ultimately expanding our understanding of the strong nuclear force and its role in the evolution of our universe.


Achieving Energy Efficiency In Buildings In Developing Countries, Pavel Ponomarev Jun 2006

Achieving Energy Efficiency In Buildings In Developing Countries, Pavel Ponomarev

Physics

No abstract provided.