Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 125

Full-Text Articles in Physical Sciences and Mathematics

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole Jan 2005

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

During the transmutation process, a significant amount of heat can be generated in a molten lead-bismuth-eutectic (LBE) target, which will be contained in a subsystem structural container made of a suitable martensitic iron-chromium-molbdenum (Fe-Cr-Mo) stainless steel such as Alloys EP-823, HT-9 and 422. These materials will be subjected to high tensile stresses while they are in contact with the molten LBE at temperatures ranging between 400 and 600oC. Therefore, a research program was conducted to evaluate the deformation characteristics of all three alloys in properly heat-treated conditions at temperatures relevant to the operating conditions.


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic, Yingtao Jiang, Bingmei Fu Jan 2005

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic, Yingtao Jiang, Bingmei Fu

Transmutation Sciences Materials (TRP)

Although liquid lead-bismuth eutectic (LBE) is a good candidate for the coolant that can be employed in a subcritical transmutation blanket, it is known to be very corrosive to stainless steel, the material used in the containment structure. To mitigate this problem, trace levels of oxygen can be introduced into the system, causing the formation of a protective oxide layer at the interface between the LBE and steel. The proper formation of this oxide layer largely depends on the accurate measurement and subsequent control of the oxygen concentration in liquid LBE.

Yttria Stabilized Zirconia (YSZ) oxygen sensors, using molten bismuth …


Use Of Positron Annihilation Spectroscopy For Stress-Strain Measurements, Ajit K. Roy Jan 2005

Use Of Positron Annihilation Spectroscopy For Stress-Strain Measurements, Ajit K. Roy

Transmutation Sciences Materials (TRP)

Engineering metals and alloys, when subjected to tensile loading beyond a limiting value, undergo plastic deformation resulting in lattice defects such as voids and dislocations. These imperfections interact with the crystal lattice, producing a higher state of internal stress, also known as residual stress, which can be associated with reduced ductility. Residual stresses are also generated in welded structures due to rapid solidification and resultant dissimilar metallurgical microstructures between the weld and the base metals. Development of these internal stresses is often influenced by incompatible permanent strain resulting from thermal and mechanical operations associated with welding and plastic deformation. These …


Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson, Dale L. Perry Jan 2005

Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

Advanced nuclear processes such the transmutation of nuclear waste, fast reactors, and spallation neutron sources require advanced materials systems to contain them. In particular, a successful program in nuclear waste processing that includes transmutation in accelerator-driven systems and fast reactors requires structural materials that are stable in the presence of non-moderating coolants. A prime candidate for such a coolant is Lead Bismuth Eutectic (LBE).

Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. For LBE systems, there is an additional challenge because the corrosive behaviors of materials in lead bismuth are not …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2005

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is focused on the evaluation of the effect of Si content on the corrosion behavior and radiation-induced embrittlement of martensitic steels having chemical compositions similar to that of modified 9Cr-1Mo steel. Numerous state-of-the-art experimental techniques are currently being planned to be employed to achieve the desired research goal.


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Jinsuo Zhang, Huajun Chen, Jichun Li Jan 2005

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Jinsuo Zhang, Huajun Chen, Jichun Li

Transmutation Sciences Materials (TRP)

In advanced nuclear energy systems, lead-alloys (e.g., lead, lead bismuth eutectic) emerge as strong candidates for transmutation and advanced reactor systems as nuclear coolants and high-power spallation neutron targets. However, it is widely recognized that corrosion of materials caused by lead-alloys presents a critical barrier to their industrial use. A few experimental research and development projects have been set up by different groups such as LANL to study the corrosion phenomena in their test facilities and to develop mitigation techniques and materials.

The goal of the proposed research project is to provide basic understanding of the protective oxide layer behaviors …


Corrosion Barrier Development For Lbe Corrosion Resistance, Biswajit Das Jan 2005

Corrosion Barrier Development For Lbe Corrosion Resistance, Biswajit Das

Transmutation Sciences Materials (TRP)

In the last quarter, a specialized sample holder was developed for the anodization of alumina on steel. In addition, it was determined that oxalic acid was the most appropriate acid for the anodization of these structures. The steel samples obtained from LANL were first cut into a number of pieces, each measuring 11mm x 8mm x 1.6mm, to allow multiple experiments. Special care was taken to ensure that the cutting process did not damage the samples. After investigation of several techniques, including laser cutting, the samples were cut using EDM wires. The cut steel pieces did not show any damage …


Corrosion Barrier Development For Lbe Corrosion Resistance: Quaterly Report, Biswajit Das Jan 2005

Corrosion Barrier Development For Lbe Corrosion Resistance: Quaterly Report, Biswajit Das

Transmutation Sciences Materials (TRP)

With the demonstration of formation of nanoporous alumina on steel and its good adhesion to substrate under thermal cycling, the next project task was to synthesize Chromium nanowires inside the alumina pores. During the previous quarter, a specialized sample holder was developed towards this goal. Various techniques for the deposition of Chromium were investigated and electro-deposition was determined to be the most suitable approach due to the large aspect ratio of the pores. A challenge in using electro-deposition for porous alumina is the potential sealing of the pores in aqueous solutions at higher temperatures. To avoid this problem, a search …


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2005

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive …


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems, Yitung Chen Dec 2004

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems, Yitung Chen

Transmutation Sciences Materials (TRP)

The goal of the proposed research project is to provide basic understanding of the protective oxide layer behaviors and to develop oxide layer growth models of steels in non-isothermal lead-alloys (lead or lead-bismuth eutectic) coolant systems. It is widely recognized that the corrosiveness of the lead-alloys is a critical obstacle and challenge for which it can be safely used or applied in the nuclear coolant systems. Active oxygen control technique can promote the formation of the “self-healing” oxide films on the structural material surface, drastically reducing steel corrosion and coolant contamination. Many experiments of steels exposed to flowing lead-alloys have …


Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry, Morphology, And Surface Preparation: Quarterly Report (October-December 2004), Allen L. Johnson, John Farley, Dale L. Perry Dec 2004

Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry, Morphology, And Surface Preparation: Quarterly Report (October-December 2004), Allen L. Johnson, John Farley, Dale L. Perry

Transmutation Sciences Materials (TRP)

This project has four components:

(1) the fabrication of a materials test apparatus with unique capabilities,

(2) comparative studies of steel corrosion under gas phase conditions comparable to the Lead Bismuth Eutectic (LBE) oxygen control conditions,

(3) isotope labeling studies, and

(4) collaborative efforts with other workers in the field.


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Final Progress Report (September 2003 – August 2004), Ajit K. Roy, Brendan O'Toole Oct 2004

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Final Progress Report (September 2003 – August 2004), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this task is to evaluate the tensile properties of three martensitic alloys namely, Alloys EP-823, HT-9 and 422 at temperatures relevant to the transmutation processes. Testing has been performed to evaluate the tensile properties of all three alloys at temperatures ranging from ambient to 600°C. The test materials were thermally-treated (quenched and tempered) prior to the evaluation of their tensile properties. The deformation characteristics of these tensile specimens, upon completion of testing, were evaluated by scanning electron microscopy (SEM). Efforts were also made to identify and characterize defects such as dislocations using transmission electron microscopy …


Use Of Positron Annihilation Spectroscopy For Stress-Strain Measurements: Quarterly Progress Report (June 01 – August 31, 2004), Ajit K. Roy Oct 2004

Use Of Positron Annihilation Spectroscopy For Stress-Strain Measurements: Quarterly Progress Report (June 01 – August 31, 2004), Ajit K. Roy

Transmutation Sciences Materials (TRP)

Highlights of Test Results:

• Residual stress measurements by the RC method on cold-worked specimens showed tensile residual stresses in austenitic stainless steel. However, compressive residual stresses were observed in martensitic stainless steel. This difference may be attributed to the difference in metallurgical phases and microstructures resulting from different thermal treatments imparted to them.

• Residual stress measurements by both ND and RC techniques on welded specimens showed similar patterns. Welded specimens consisting of similar material showed tensile residual stresses in the vicinity of the fusion line (FL). However, welded specimens consisting of dissimilar materials (austenitic and martensitic stainless steel …


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (July 1 – Sept. 30, 2004), Yingtao Jiang, Bingmei Fu Sep 2004

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (July 1 – Sept. 30, 2004), Yingtao Jiang, Bingmei Fu

Transmutation Sciences Materials (TRP)

Dr. Jiang Ma and Mr. Xiaolong Wu worked in LANL between July 1 and Sept. 15 to conduct the experiment. Test of the corrosion of different materials in LBE was performed. The influence of the process of gas introduction to the LBE was studied. Data analysis work was performed based on accumulated data. In the same time, progress has been made in the simulation for transport in oxygen mixing, and one paper was presented in a conference. Another paper was composed and submitted to IEEE International Symposium of Circuits and Systems for the track Chemical Sensors. Preparation of a paper …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Trp Final Report 09/01/2003-08/31/2004, Samir Moujaes, Yitung Chen Aug 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Trp Final Report 09/01/2003-08/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2004-08/31/2004, Samir Moujaes, Yitung Chen Aug 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2004-08/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2003 – May 2004), Ajit K. Roy Jul 2004

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2003 – May 2004), Ajit K. Roy

Transmutation Sciences Materials (TRP)

As indicated in the original proposal, the primary objective of this task was to evaluate the effect of hydrogen on environment-assisted cracking of candidate target structural materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization were martensitic stainless steels including Alloy EP 823, HT-9, and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) of these materials were evaluated in neutral and acidic aqueous environments using smooth and notched tensile specimens under constant-load (CL) and slow-strain-rate (SSR) conditions. Further, the …


Spectroscopic And Microscopic Investigation Of The Corrosion Of 316/316l Stainless Steel By Lead-Bismuth Eutectic (Lbe) At Elevated Temperatures: Importance Of Surface Preparation, Allen L. Johnson, Denise Parsons, Julia Manzerova, Dale L. Perry, Daniel Koury, Brian D. Hosterman, John Farley Jul 2004

Spectroscopic And Microscopic Investigation Of The Corrosion Of 316/316l Stainless Steel By Lead-Bismuth Eutectic (Lbe) At Elevated Temperatures: Importance Of Surface Preparation, Allen L. Johnson, Denise Parsons, Julia Manzerova, Dale L. Perry, Daniel Koury, Brian D. Hosterman, John Farley

Transmutation Sciences Materials (TRP)

The corrosion of steel by lead–bismuth eutectic (LBE) is an important issue in proposed nuclear transmutation schemes. Russian scientists at the IPPE exposed steel samples to oxygen-controlled LBE at temperatures up to 823 K and exposure times up to 3000 h. We have characterized these post-exposure steel samples and unexposed controls, using scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS). Previous researchers have investigated the corrosion by LBE of steel of varying composition. In the present work, we compared two samples having the same composition (standard nuclear grade 316/316L) but different surface preparation: a cold-rolled …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Third Quarterly Report 03/01/2004-05/31/2004, Samir Moujaes, Yitung Chen May 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Third Quarterly Report 03/01/2004-05/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das May 2004

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

The objective of this project is to develop a novel nanostructure based coating technology that will provide significantly improved corrosion resistance for steel in LBE at elevated temperatures (500 - 600oC), as well as provide long-term reliability under thermal cycling. The nanostructure based coatings will consist of a layer of nanoporous alumina with the pores filled with an oxidizing metal such as Cr, followed by a capping layer of alumina. Alumina, which is a robust anti-corrosion material, provides corrosion resistance at elevated temperatures. The Cr serves two purposes: (1) it acts as a solid filler material for the …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy May 2004

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The purpose of this collaborative research project involving the University of Nevada Las Vegas (UNLV), Los Alamos National Laboratory (LANL) and Idaho State University (ISU) is to evaluate the effect of silicon (Si) content on the corrosion behavior and radiation-induced embrittlement of martensitic stainless steels having chemical compositions similar to that of the modified 9Cr-1Mo 2 steel. Recent studies at LANL involving Alloy EP-823 of different Si content have demonstrated that increased Si content in this alloy may enhance the corrosion resistance in molten lead-bismuth-eutectic (LBE). Since very little data exists in the open literature on the beneficial effect of …


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems, Yitung Chen, Jinsuo Zhang, Jichun Li Apr 2004

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems, Yitung Chen, Jinsuo Zhang, Jichun Li

Transmutation Sciences Materials (TRP)

The goal of the proposed research project is to provide basic understanding of the protective oxide layer behaviors and to develop oxide layer growth models of steels in non-isothermal leadalloys (lead or lead-bismuth eutectic) coolant systems. It is widely recognized that the corrosiveness of the lead-alloys is a critical obstacle and challenge for which it can be safely used or applied in the nuclear coolant systems. Active oxygen control technique can promote the formation of the “self-healing” oxide films on the structural material surface, drastically reducing steel corrosion and coolant contamination. Many experiments of steels exposed to flowing leadalloys have …


Use Of Positron Annihilation Spectroscopy For Stress-Strain Measurements, Ajit K. Roy Apr 2004

Use Of Positron Annihilation Spectroscopy For Stress-Strain Measurements, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The purpose of this collaborative research project involving the University of Nevada Las Vegas (UNLV) and Idaho State University (ISU) is to evaluate the feasibility of determining residual stresses of welded, bent (three-point-bend), and cold-worked engineering materials using a new nondestructive technique based on positron annihilation spectroscopy (PAS). The proposed technique is to use γ-rays from a small MeV electron linear accelerator (Linac) to generate positrons inside the test sample via 2 pair production. This method can be used for materials characterization and investigation of defects in thick samples that usually cannot be accomplished by conventional positron technique or other …


Preparation Studies For Secondary Electron Emission Experiments On Superconducting Niobium, Anoop George, Robert A. Schill Jr. Mar 2004

Preparation Studies For Secondary Electron Emission Experiments On Superconducting Niobium, Anoop George, Robert A. Schill Jr.

Transmutation Sciences Materials (TRP)

Accelerator driven transmutation of waste is one complementary approach to deal with spent nuclear fuel as compared to permanent storage. High-energy protons generated by a particle accelerator collide with a heavy metal target producing neutrons. Long-lived radioactive isotopes interacting with the neutrons transmute into shorter-lived isotopes. To generate the high-energy protons efficiently, linear accelerators use multi-cell superconducting radio frequency (RF) cavities made of niobium. Superconducting niobium cavities have several advantages, including small power dissipation. The high electromagnetic fields present in these cavities may result in undesired field emission from surface imperfections with the probability of generating an avalanche of secondary …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: First Quarterly Report 01/12/04-02/29/04, Samir Moujaes, Yitung Chen Feb 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: First Quarterly Report 01/12/04-02/29/04, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry Jan 2004

Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

There is an active international interest in lead-bismuth eutectic and similar liquid lead systems because of the relevance to the transmutation of nuclear waste, fast reactors, and spallation neutron sources. A successful program in nuclear waste processing that includes transmutation in accelerator-driven systems and fast reactors, would significantly decrease the space requirements for geological repositories.

Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. For lead bismuth eutectic (LBE) systems, there is an additional challenge because the corrosive behaviors of materials in LBE are not well understood. Most of the available information …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy Jan 2004

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of environmental and mechanical parameters on environment induced degradations of candidate target structural materials for applications in spallation-neutron-target systems, such as accelerator-driven systems for the transmutation of waste. The materials selected for evaluation and characterization are martensitic stainless steels including Alloys HT-9, EP-823 and Type 422 stainless steel (SS).

More recently, this experimental program has been expanded to evaluate the effect of molten lead-bismuth eutectic (LBE) on the corrosion behavior of target structural materials in the presence of oxygen. Since the Materials Performance Laboratory (MPL) at UNLV currently cannot …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure. …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole Jan 2004

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The focus of this work is to determine the effect of elevated temperatures on the tensile properties of Alloy EP-823 and other martensitic alloys having similar compositions. The information obtained through this work describing the mechanism of elevated-temperature deformation will assist in developing suitable target structural materials possessing enhanced LBE corrosion resistance at process temperatures, allowing the continued development and eventual deployment of these technologies.


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic, Yingtao Jiang, Bingmei Fu, Woosoon Yim Jan 2004

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic, Yingtao Jiang, Bingmei Fu, Woosoon Yim

Transmutation Sciences Materials (TRP)

Lead-bismuth eutectic (LBE) is a candidate as a spallation target in sub-critical transmutation systems and as a coolant in nuclear programs. One of the primary concerns with LBE systems is the corrosion of stainless steel, the primary structural material used in nuclear systems. To mitigate this problem, trace levels of oxygen can be introduced into the system, causing the formation of a protective oxide layer at the interface between the LBE and steel. To protect the steel components, this oxide layer must be properly maintained. However, too much oxygen will produce unwanted oxide precipitation within the coolant and elsewhere in …