Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Oceanography and Atmospheric Sciences and Meteorology

Theses/Dissertations

2017

Aerosols

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Investigating The Effects Of Ice-Forming Saharan Dust Aerosols On Tropical Deep Convection Using Spectral Bin Microphysics, Matthew Scott Gibbons Jan 2017

Investigating The Effects Of Ice-Forming Saharan Dust Aerosols On Tropical Deep Convection Using Spectral Bin Microphysics, Matthew Scott Gibbons

Legacy Theses & Dissertations (2009 - 2024)

Aerosol effects on cloud and precipitation formation remain a significant source of uncertainty in the study of weather and climate. Aerosols can impact cloud and precipitation formation by functioning as cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN) and/or ice nuclei (IN) affecting subsequent cloud microphysical processes. Aerosol effects on clouds are tightly interconnected with cloud dynamic and thermodynamic variables, some of which are currently impossible or infeasible to observe with existing sensors. Numerical models can be used to untangle aerosols effects from cloud dynamics and thermodynamics, but model results can be affected by the complexity of the parameterizations …


Sensitivity Of Meiyu Front To Aerosol Spatial Distribution Over Yangtze-Huai River Valley, Chu-Chun Huang Jan 2017

Sensitivity Of Meiyu Front To Aerosol Spatial Distribution Over Yangtze-Huai River Valley, Chu-Chun Huang

Legacy Theses & Dissertations (2009 - 2024)

The observed contrasts in both aerosol number and size associated with frequent north-polluted-south-clean (NPSC) conditions over Yangtze-Huai River Valley (YHRV) during the Meiyu season may induce different aerosol-cloud-radiation interactions within the region causing different evolution of the Meiyu system. This aspect was studied by conducting WRF sensitivity simulations with different configurations of north-south aerosol number and size contrasts. Results show that when the Meiyu system develops at YHRV, more aerosols in the north (than the south) cause more but smaller cloud droplets to form, resulting in stronger radiative cooling at north part of the Meiyu system. Subsequently, the differential cooling …