Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 61 - 90 of 1235

Full-Text Articles in Physical Sciences and Mathematics

Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin Jan 2023

Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin

Theses and Dissertations

Thin-film nanocomposite (TFN) desalination membranes were prepared based on a polyethersulfone (PES) support, where the polyamide (PA) layer was embedded with amine-functionalized graphene oxide (GO). The effect of adding various concentrations of functionalized and un-functionalized GO on the desalination performance, hydrophilicity, and morphology of the membranes was additionally assessed throughout this work. Scanning electron microscopy (SEM) measurements were used to assess the morphology of the membranes in combination with Brunauer-Emmett-Teller (BET) analysis. Contact angle measurements were used to gauge the hydrophilicity of the synthesized membranes. The membrane with the best desalination performance contained 1x10-3 wt/vol% of functionalized GO in …


Research Progress In Cucurbit[N]Uril-Based Metal Nanomaterials For Electrocatalytic Applications, Zong-Nan Wei, Min-Na Cao, Rong Cao Jan 2023

Research Progress In Cucurbit[N]Uril-Based Metal Nanomaterials For Electrocatalytic Applications, Zong-Nan Wei, Min-Na Cao, Rong Cao

Journal of Electrochemistry

Metal nanomaterials have exhibited excellent performance in electrocatalytic applications, but they still face the problems of poor stability and limited regulation strategies. It is an efficient strategy for greatly enhanced catalytic activity and stability by introducing a second component. In this review, we provide the sketch for the combination of metal nanomaterials and cucurbit[n]urils (CB[n]s) in electrocatalytic applications. CB[n]s are a series of macrocycles with rigid structure, high stability, and function groups for coordinating with metal sites, which make them promising to stabilize and modulate the metal nanomaterials for ideal performance. The discussion classifies the roles of CB[n]s, involving CB[n]s …


Architecture Of Heptagonal Metallo-Macrocycles Via Embedding Metal Nodes Into Its Rigid Backbone, A.M.Shashika D. Wijerathna, He Zhao, Qiangqiang Dong, Qixia Bai, Zhiyuan Jiang, Jie Yuan, Jun Wang, Mingzhao Chen, Markus Zirnheld, Rockwell T. Li, Yuan Zhang, Yiming Li, Pingshan Wang Jan 2023

Architecture Of Heptagonal Metallo-Macrocycles Via Embedding Metal Nodes Into Its Rigid Backbone, A.M.Shashika D. Wijerathna, He Zhao, Qiangqiang Dong, Qixia Bai, Zhiyuan Jiang, Jie Yuan, Jun Wang, Mingzhao Chen, Markus Zirnheld, Rockwell T. Li, Yuan Zhang, Yiming Li, Pingshan Wang

College of Sciences Posters

Metal-organic macrocycles have received increasing attention not only due to their versatile applications such as molecular recognition, compounds encapsulation, anti-bacteria and others, but also for their important role in the study of structure-property relationship at nano scale. However, most of the constructions utilize benzene ring as the backbone, which restricts the ligand arm angle in the range of 60, 120 and 180 degrees. Thus, the topologies of most metallo-macrocycles are limited as triangles and hexagons, and explorations of using other backbones with large angles and the construction of metallo-macrocycles with more than six edges are very rare.

In this study, …


Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha Jan 2023

Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha

Dissertations and Theses

This dissertation delves into the innovative application of mesoporous silica nanoparticles (MSNs) for targeted drug delivery in colorectal cancer (CRC), one of the most prevalent and deadly forms of cancer worldwide. The initial focus of the research is on developing enzyme-responsive MSNs loaded with veratridine (VTD), an alkaloid derived from natural sources that demonstrates potent anticancer activity. The nanoparticles have been engineered to deliver VTD selectively to CRC cells, releasing the payload upon being exposed to specific enzymes primarily secreted by these cells. This strategy has dual advantages of amplifying the anticancer effects while minimizing potential side effects on healthy …


Effect Of Decorating Super Paramagnetic Iron Oxide Nanoparticles With Silver Nanoparticles On Their Magneto-Photo Thermal Heating Efficiency, Anthony Joseph Afful Jan 2023

Effect Of Decorating Super Paramagnetic Iron Oxide Nanoparticles With Silver Nanoparticles On Their Magneto-Photo Thermal Heating Efficiency, Anthony Joseph Afful

All Graduate Theses, Dissertations, and Other Capstone Projects

Cancer treatment is rather dangerous to the body, often involving many secondary effects, including nausea, hair loss, and weight fluctuations. The search for non-invasive, highly efficient, and targetable treatments ameliorates these issues. Super paramagnetic iron oxide nanoparticles (SPIONS) have been used for other medical purposes such as magnetic resonance imaging contrast agent and is being extensively studied as a potential candidate for many cancer therapeutic and diagnostic approaches due to its biocompatibility and superior magnetic properties. When subjected to an external alternating magnetic field SPIONS generate heat mainly due to the friction of the SPIONS against the fluid it is …


Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons Jan 2023

Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons

UNF Graduate Theses and Dissertations

This thesis involves the fabrication and characterization of devices made from two different superconducting materials: yttrium barium copper oxide (YBCO), a high-TC complex oxide, and niobium nitride (NbN), a low-TC transition metal nitride. Both types of devices are fabricated on strontium titanate substrates, which provides a good lattice match to YBCO and also an extremely large permittivity at low temperature. We demonstrate that wet etching of YBCO thin films via bromine can be a viable microfrabriation technique for the material. Using approximately 35 nm thick epitaxially grown YBCO on an STO substrate, we were able to fabricate YBCO “microwires” with …


Inventions In The Area Of Nanotechnologies And Nanomaterials. Part I, Leonid A. Ivanov, Li Da Xu, Zhanna V. Pisarenko, Svetlana R. Muminova, Nadezda G. Miloradova Jan 2023

Inventions In The Area Of Nanotechnologies And Nanomaterials. Part I, Leonid A. Ivanov, Li Da Xu, Zhanna V. Pisarenko, Svetlana R. Muminova, Nadezda G. Miloradova

Information Technology & Decision Sciences Faculty Publications

Introduction. Advanced technologies inspire people by demonstrating the latest achievements (materials, methods, systems, technologies, devices etc.) that dramatically change the world. This, first of all, concerns nanotechnological inventions designed by scientists, engineers and specialists from different countries. Main part. The article provides an abstract overview of inventions of scientists, engineers and specialists from different countries: Germany, Russia, China, USA et al. The results of the creative activity of scientists, engineers and specialists, including inventions in the field of nanotechnology and nanomaterials allow, when introduced to industry, achieving a significant effect in construction, housing and communal services, and related sectors of …


Superheating Field In Superconductors With Nanostructured Surfaces, W. P. M. R. Pathirana, A. Gurevich Jan 2023

Superheating Field In Superconductors With Nanostructured Surfaces, W. P. M. R. Pathirana, A. Gurevich

Physics Faculty Publications

We report calculations of a dc superheating field Hsh in superconductors with nanostructured surfaces. Numerical simulations of the Ginzburg-Landau (GL) equations were performed for a superconductor with an inhomogeneous impurity concentration, a thin superconducting layer on top of another superconductor, and superconductor-insulator-superconductor (S-I-S) multilayers.The superheating field was calculated taking into account the instability of the Meissner state with a nonzero wavelength along the surface, which is essential for realistic values of the GL parameter κ. Simulations were done for the materials parameters of Nb and Nb3Sn at different values of κ and the mean free paths. We …


Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Carbon-Al Interface Effect On The Performance Of Ionic Liquid-Based Supercapacitor At 3 V And 65 OC, Zhen-Zhen Ye, Shu-Ting Zhang, Xin-Qi Chen, Jin Wang, Ying Jin, Chao-Jie Cui, Lei Zhang, Lu-Ming Qian, Gang Zhang, Wei-Zhong Qian Dec 2022

Carbon-Al Interface Effect On The Performance Of Ionic Liquid-Based Supercapacitor At 3 V And 65 OC, Zhen-Zhen Ye, Shu-Ting Zhang, Xin-Qi Chen, Jin Wang, Ying Jin, Chao-Jie Cui, Lei Zhang, Lu-Ming Qian, Gang Zhang, Wei-Zhong Qian

Journal of Electrochemistry

Ionic liquid (IL) electrolyte-based supercapacitors (SCs) have advantages of high operating voltage window, high energy density and nonflammability, as compared to conventional acetonitrile-based organic electrolyte SCs, and are typically suitable for the large-scale energy storage in the era of carbon neutrality full of renewable, but unstable electricity. However, current efforts were concentrated on the study with coin-cell type of IL-SCs, and less has been reported on the pouch type of IL-SCs for a long cycling time yet. To fabricate a reliable SC for the life time test or for the accelerated aging test under high temperature, one should concern the …


Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi Dec 2022

Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi

Arts & Sciences Electronic Theses and Dissertations

Ultrasensitive detection and quantification of soluble, secreted and cell surface-bound proteins is critical for advancing our understanding of cellular systems, enabling effective drug development, novel therapies, and bio-diagnostics. However, exiting technologies are largely limited by their sensitivity, making the detection and quantification of low-abundant proteins extremely challenging. This forms a major barrier in various fields of biology and biomedical sciences. In this work, we introduce novel cellular analysis methodologies based on plasmon-enhanced fluorescence for analyzing cell structure and probing surface and secreted proteins from cells. In the first part, we introduce plasmon-enhanced expansion microscopy and demonstrate the effectiveness of employing …


Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew Dec 2022

Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Imaging of both the positions and orientations of single fluorophores, termed single-molecule orientation-localization microscopy, is a powerful tool for the study of biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here we realize a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the three-dimensional (3D) positions and 3D orientations of single molecules, with precisions of 10.9 nm and 2.0° over a 1.5-μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red molecules transiently bound to lipid-coated spheres, accurately resolving …


Achieving Safe Use Of Advanced Materials In Drinking Water Through Novel Nano Analytics And Enabling Electrification Using Green Catalyst, Kenneth Ray Flores Dec 2022

Achieving Safe Use Of Advanced Materials In Drinking Water Through Novel Nano Analytics And Enabling Electrification Using Green Catalyst, Kenneth Ray Flores

Open Access Theses & Dissertations

The accumulation of engineered nanomaterials (ENMs) in environmental sectors will continue to increase as more applications are discovered for their unique properties and characteristics. Additionally, the presence of nanomaterials in the environment becomes exacerbated as more consumer products containing nanoparticles are approved for use. It is debated whether the toxic effects of nanoparticles stem from the particles themselves, ionic species, or formation of secondary particles. Therefore, understanding the behavior of nanoparticles in the environment becomes key to discerning the toxicological effects of nanoparticles. Many advancements have been made with ICP-MS to understand the behavior of nanoparticles in the environmental systems, …


Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun Dec 2022

Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun

Open Access Theses & Dissertations

Scrutinizing the remarkable and tunable properties of magnetic materials at a nanoscale size "There's Plenty of Room at the Bottom..." Richard Feynman, this study attempts to find sustainable solutions to some of the deteriorating environmental, health, and energy problems the world is encountering. Due to their simple preparation, surface adaptability, and tunable magnetic and optical properties, magnetic nanoparticles have been extensively investigated in water treatment, cancer therapy, data storage, and more. However, relying on non-reusable and chemical-based treatment agents in water, complex and costly cancer treatment procedures and molecular magnets that operate far below room temperature limited those attempts from …


Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes Dec 2022

Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes

Open Access Theses & Dissertations

For a prosperous and sustainable future, hydrogen is an encouraging solution due to its simple transition for industrial decarbonization and synergy for economic development. Paradoxically, current hydrogen production pathways release substantial amount of greenhouse gases into the atmosphere contributing to climate change. To keep up with increasing demand, hydrogen could be produced through microwave-assisted thermocatalytic dehydrogenation of fossil fuels without emitting carbon dioxide. This requires specified catalysts to meet the requirements of hydrogen yield and selectivity. The objective of the present research is to fabricate, characterize, and compare iron-based alumina (FeAl_x O_y) catalysts produced via solution combustion synthesis and iron-based …


Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith Dec 2022

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith

Legacy Theses & Dissertations (2009 - 2024)

The field of nucleic acid technology is rapidly expanding with new impactful discoveriesbeing made each year. Starting from the discovery of the double-helix structure, cloning, gene editing, polymerase chain reaction (PCR), CRISPR technology, and even the late mRNA vaccines; nucleic acid technology is at the forefront of improving medicine. Nucleic acid technology is extremely versatile due to its easy programmability, automated cheap synthesis, and even its catalog for numerous chemical modifications that can be used to alter structure stability. For example, the number of permutations that can be made with DNA just by altering the code for adenine (A), cytosine …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Efficient Interface Enabled By Nano-Hydroxyapatite@Porous Carbon For Lithium-Sulfur Batteries, Jia-Yu Wang, Xue-Feng Tong, Qi-Fan Peng, Yue-Peng Guan, Wei-Kun Wang, An-Bang Wang, Nai-Qiang Liu, Ya-Qin Huang Nov 2022

Efficient Interface Enabled By Nano-Hydroxyapatite@Porous Carbon For Lithium-Sulfur Batteries, Jia-Yu Wang, Xue-Feng Tong, Qi-Fan Peng, Yue-Peng Guan, Wei-Kun Wang, An-Bang Wang, Nai-Qiang Liu, Ya-Qin Huang

Journal of Electrochemistry

The dissolution and “shuttle effect” of lithium polysulfides (LiPSs) hinder the application of lithium-sulfur (Li-S) batteries. To solve those problems, inspired by natural materials, a nano-hydroxyapatite@porous carbon derived from chicken cartilage (nano-HA@CCPC) was fabricated by employing a simple pre-carbonization and carbonization method, and applied in Li-S batteries. The nano-HA@CCPC would provide a reactive interface that allows efficient LiPSs reduction. With a strong affinity for LiPSs and an excellent electronic conductive path for converting LiPSs, the shuttle effect of LiPSs was confined and the redox kinetics of LiPSs was substantially enhanced. Li-S batteries employing nano-HA@CCPC-modified separators exhibited long cycle life and …


Oligomeric Ionic Liquids: Bulk, Interface And Electrochemical Application In Energy Storage, Dan-Dan Li, Xiang-Yu Ji, Ming Chen, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng Nov 2022

Oligomeric Ionic Liquids: Bulk, Interface And Electrochemical Application In Energy Storage, Dan-Dan Li, Xiang-Yu Ji, Ming Chen, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng

Journal of Electrochemistry

Over recent years, oligomer ionic liquids (OILs), a novel class of ionic liquids, are becoming preferential electrolytes for high-performance energy-storage devices, such as supercapacitors with enhanced energy density and non-flammable lithium-ion batteries (LIBs). Herein, structures, properties, and their associations of the up-to-the-minute formulated OILs are systematically summarized and elaborately interpreted, especially for dicationic ionic liquids and tricationic ionic liquids. The physicochemical and electrochemical properties of OIL-based electrolytes are presented and analyzed, which are vitally important for supercapacitors and LIBs. Subsequently, the applications of OILs as electrolytes for supercapacitors and LIBs are summarized, with the comparisons of the energy-storage mechanisms and …


Insight Into The Effects Of Cation Disorder And Surface Chemical Residues On The Initial Coulombic Efficiency Of Layered Oxide Cathode, Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He Nov 2022

Insight Into The Effects Of Cation Disorder And Surface Chemical Residues On The Initial Coulombic Efficiency Of Layered Oxide Cathode, Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He

Journal of Electrochemistry

Lithium layered oxide LiNi0.6Co0.2Mn0.2O2 (NCM622) is one of the most promising cathode materials in high-energy lithium-ion batteries for electric vehicles. However, one drawback for NCM622 is that its initial coulombic efficiency (ICE) is only about 87%, which is at least 6% lower than that of LiCoO2 or LiFePO4. In this work, we investigated the effects of surface chemical residues (e.g., LiOH and Li2CO3) and Li/Ni cation disorder resulted during the sintering on the ICE. We found that the ICE of the as-prepared samples could be boosted …


Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li Oct 2022

Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li

Journal of Electrochemistry

Hydrogen is a clean, efficient, renewable energy resource and the most promising alternative to fossil fuels for future carbon-neutral energy supply. Therefore, sustainable hydrogen production is highly attractive and urgently demanded, especially via water electrolysis that has clean, abundant precursors and zero emission. However, current water electrolysis is hindered by the sluggish kinetics and low cost/energy efficiency of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this regard, electrochemical synthesis offers prospects to raise the efficiency and benefit of water electrolysis by fabricating advanced electrocatalysts and providing more efficient/value-adding co-electrolysis alternatives. It is an eco-friendly and facile …


Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng Sep 2022

Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng

Journal of Electrochemistry

Oxygen evolution reaction (OER) is a significant half-reaction for water splitting reaction, and attention is directed to the high-performance non-precious catalysts. Iron nickel (FeNi)-based material is considered as the most promising pre-catalyst, that will be transferred to the real active phase in the form of high valence state metal species. Even so, the catalytic performance is largely influenced by the structure and morphology of the FeNi pre-catalysts, and lots of work has been done to optimize and tune the structure and chemical environment of the FeNi- based pre-catalysts so as to increase the catalytic performance. Herein, based on our work, …


Self-Supporting Nife Ldhs@Co-Oh-Co3 Nanorod Array Electrode For Alkaline Anion Exchange Membrane Water Electrolyzer, Dan-Dan Guo, Hong-Mei Yu, Jun Chi, Zhi-Gang Shao Sep 2022

Self-Supporting Nife Ldhs@Co-Oh-Co3 Nanorod Array Electrode For Alkaline Anion Exchange Membrane Water Electrolyzer, Dan-Dan Guo, Hong-Mei Yu, Jun Chi, Zhi-Gang Shao

Journal of Electrochemistry

The development of efficient and durable electrodes for anion exchange membrane water electrolyzers (AEMWEs) is essential for hydrogen production. In this work, 2D NiFe layered double hydroxides (NiFe LDHs) nanosheets were grown on the 1D cobaltous carbonate hydroxide nanowires array (Co-OH-CO3) and the unique 3D layered self-supporting nanorod array (NiFe LDHs@Co-OH-CO3/NF) electrode was obtained. Importantly, we demonstrated an efficient and durable self-supporting NiFe LDHs@Co-OH-CO3/NF electrode for oxygen evolution reaction (OER) and as the anode of the AEMWE. In a three-electrode system, the self-supporting NiFe LDHs@Co-OH-CO3/NF electrode showed excellent catalytic activity for OER, …


Variations In Copper Form Exposure Differentially Modulate Zea Mays (Corn) Physiological Responses, Carolina Valdes Bracamontes Aug 2022

Variations In Copper Form Exposure Differentially Modulate Zea Mays (Corn) Physiological Responses, Carolina Valdes Bracamontes

Open Access Theses & Dissertations

In the present study, Zea mays seedlings grown under nano Cu(OH)2 (nCu), bulk Cu(OH)2 (bCu), and ionic CuSO4 (iCu) compound exposure were harvested after six days. The nutritional profile was determined to be significantly disrupted in the roots by 1000 ppm bCu treatment, resulting in a 58.7% reduction in potassium compared to the control. In the shoots, a significant decrease of manganese was observed for 10 and 1000 ppm iCu treatments with 55.7% and 64.2% reductions, respectively. The overall protein content and catalase (CAT) enzymatic activity, however, remained unaffected in either roots or shoots, while an absence of polyphenol oxidase …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


Mechanism And Application Of Nickel Nano-Cone By Electrodeposition On A Flexible Substrate, Xiu-Ren Ni, Ya-Ting Zhang, Chong Wang, Yan Hong, Yuan-Ming Chen, Yuan-Zhang Su, Wei He, Xian-Ming Chen, Ben-Xia Huang, Zhen-Lin Xu, Yi-Feng Li, Neng-Bin Li, Yong-Jie Du Jul 2022

Mechanism And Application Of Nickel Nano-Cone By Electrodeposition On A Flexible Substrate, Xiu-Ren Ni, Ya-Ting Zhang, Chong Wang, Yan Hong, Yuan-Ming Chen, Yuan-Zhang Su, Wei He, Xian-Ming Chen, Ben-Xia Huang, Zhen-Lin Xu, Yi-Feng Li, Neng-Bin Li, Yong-Jie Du

Journal of Electrochemistry

Nano-array structure possesses promising prospect in power supply, optical device and electronic manufacturing. In this paper, a black nickel nano-cone array was prepared on a flexible substrate by galvanostatic deposition and the corresponding factors involved in the fabrication of nickel nano-cone array was explored. Experimental results showed that a large current density and low main salt concentration were not favored to the formation of cone nickel structure. It was also found that ammonium chloride, as the crystal modifier, was crucial to deposit the uniform nano-cone array. In addition, the growth mechanism of nickel nano-cone was further studied by molecular dynamics …


Reducing Leakage Current And Enhancing Polarization In Multiferroic 3d Super-Nanocomposites By Microstructure Engineering, Erik Enriquez, Ping Lu, Leigang Li, Bruce Zhang, Haiyan Wang, Quanxi Jia, Aiping Chen Jul 2022

Reducing Leakage Current And Enhancing Polarization In Multiferroic 3d Super-Nanocomposites By Microstructure Engineering, Erik Enriquez, Ping Lu, Leigang Li, Bruce Zhang, Haiyan Wang, Quanxi Jia, Aiping Chen

Physics and Astronomy Faculty Publications and Presentations

Multiferroic materials have generated great interest due to their potential as functional device materials. Nanocomposites have been increasingly used to design and generate new functionalities by pairing dissimilar ferroic materials, though the combination often introduces new complexity and challenges unforeseeable in single-phase counterparts. The recently developed approaches to fabricate 3D super-nanocomposites (3D‐sNC) open new avenues to control and enhance functional properties. In this work, we develop a new 3D‐sNC with CoFe2O4 (CFO) short nanopillar arrays embedded in BaTiO3 (BTO) film matrix via microstructure engineering by alternatively depositing BTO:CFO vertically-aligned nanocomposite layers and single-phase BTO layers. This microstructure engineering method allows …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Research Progresses Of Cobalt Interconnect And Superfilling By Electroplating In Chips, Li-Jun Wei, Zi-Han Zhou, Yun-Wen Wu, Ming Li, Su Wang Jun 2022

Research Progresses Of Cobalt Interconnect And Superfilling By Electroplating In Chips, Li-Jun Wei, Zi-Han Zhou, Yun-Wen Wu, Ming Li, Su Wang

Journal of Electrochemistry

Copper interconnect using dual damascene technology has always been the main means for metallization in the back end of line process. However, with the size effect becoming more and more obvious due to feature size reduction, copper interconnect can no longer meet the demand for high circuit speed in Post-Moore era. Following copper interconnection, cobalt interconnection in chips attracts much attention as an interconnect technology by the next generation, which has been introduced in 7 nm node of integrated circuit manufacturing and below. The electron mean free path of cobalt (~10 nm) is much shorter than copper’s (39 nm), thus …


An Investigation On The Interface Corrosion Behaviors Of Cobalt Interconnects In Chemical Mechanical Polishing Slurry, Kai-Xuan Qin, Peng-Fei Chang, Yu-Lin Huang, Ming Li, Tao Hang Jun 2022

An Investigation On The Interface Corrosion Behaviors Of Cobalt Interconnects In Chemical Mechanical Polishing Slurry, Kai-Xuan Qin, Peng-Fei Chang, Yu-Lin Huang, Ming Li, Tao Hang

Journal of Electrochemistry

Cobalt is widely regarded as the most promising interconnect material for 10 nm node and beyond. The development of a chemical mechanical planarization (CMP) slurry suitable for cobalt interconnect is a critical component for the application of cobalt interconnect. During CMP process of the interconnect layer, the achievement of high-quality surface after planarization is greatly challenged by the metal corrosion in CMP slurry. In this contribution, the corrosion behavior of cobalt in a slurry with potassium persulfate (KPS) as an oxidizer, glycine as a complexing agent, and benzotriazole (BTA) as an inhibitor was investigated. Static erosion rates (SER) of cobalt …