Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 90 of 97

Full-Text Articles in Physical Sciences and Mathematics

Measurement And Modeling Of Infrared Nonlinear Absorption Coefficients And Laser-Induced Damage Thresholds In Ge And Gasb, Torrey J. Wagner, Matthew J. Bohn, Ronald A. Coutu Jr., L. P. Gonzales, J. M. Murray, K. L. Schepler, S. Guha Oct 2010

Measurement And Modeling Of Infrared Nonlinear Absorption Coefficients And Laser-Induced Damage Thresholds In Ge And Gasb, Torrey J. Wagner, Matthew J. Bohn, Ronald A. Coutu Jr., L. P. Gonzales, J. M. Murray, K. L. Schepler, S. Guha

Faculty Publications

Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5 µm for the first time, to our knowledge. Results agreed well with published theory. Single-shot damage thresholds were also measured at 2.5 µm and agreed well with modeled thresholds using experimentally determined parameters including nonlinear absorption coefficients and temperature dependent linear absorption. The damage threshold for a single-layer Al2O3 anti-reflective coating on Ge was 55% or 35% lower than the uncoated threshold for picosecond or nanosecond …


All Solid-State Mid-Ir Laser Development, Nonlinear Absorption Investigation And Laser-Induced Damage Study, Torrey J. Wagner Sep 2010

All Solid-State Mid-Ir Laser Development, Nonlinear Absorption Investigation And Laser-Induced Damage Study, Torrey J. Wagner

Theses and Dissertations

In this research, nonlinear optical absorption coefficients and laser-induced damage thresholds are measured in Ge and GaSb, which are materials that are used in IR detectors. Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, two-photon and free-carrier absorption coefficients are measured in Ge and GaSb at 2.05 and 2.5 μm for the first time. At these wavelengths, nonlinear absorption is the primary damage mechanism, and damage thresholds at picosecond and nanosecond pulse widths were measured and agreed well with modeled thresholds using experimentally measured parameters. The damage threshold for a single-layer Al …


Afm-Patterned 2-D Thin-Film Photonic Crystal Analyzed By Complete Angle Scatter, Nicholas C. Herr Mar 2010

Afm-Patterned 2-D Thin-Film Photonic Crystal Analyzed By Complete Angle Scatter, Nicholas C. Herr

Theses and Dissertations

The purpose of this research was to use an atomic force microscope (AFM) to generate a 2-D square array of sub-wavelength surface features from a single material over a region large enough to permit optical characterization. This work is an extension of previous AFIT nano-patterning work and is in response to the small subunit sizes demanded for the production of optical metamaterials and photonic crystals. A diamond nano-indentation AFM probe was used to produce a 325-μm by 200-μm array of indentations in a 120-nm thick polystyrene film deposited on silicon. Indentation spacing of 400 nm produced well-defined surface features with …


Rubidium Recycling In A High Intensity Short Duration Pulsed Alkali Laser, Wooddy S. Miller Mar 2010

Rubidium Recycling In A High Intensity Short Duration Pulsed Alkali Laser, Wooddy S. Miller

Theses and Dissertations

Laser induced fluorescence was used to study how pump pulse duration and alkali recycle time effects maximum power output in a Diode Pumped Alkali Laser (DPAL) system. A high intensity short pulsed pump source was used to excited rubidium atoms inside a DPAL-type laser. The maximum output power of the laser showed a strong dependence upon the temporal width of the pump pulse in addition to the input pump intensity. A linear relationship was observed between the maximum output power and the pulse width due to the effective lifetime of the excited state, defined as the time it takes for …


Hard Collisions In Rubidium Using Sub-Doppler Spectroscopy, Douglas E. Thornton Mar 2010

Hard Collisions In Rubidium Using Sub-Doppler Spectroscopy, Douglas E. Thornton

Theses and Dissertations

To better understand the laser kinetics of an alkali gain medium, hard collisions, or velocity-changing collisions, has been studied and a velocity-changing collisional rate has been calculated. Previous works have studied these collisions, but no rate has been calculated. Using the precise tool of sub-Doppler spectroscopy, atomic hard collisions can be observed. The collected spectra are fitted with two different line shapes to demonstrate the accuracy of this method. From the fits, the number of hard collisions can be extracted. The time scale of the hard collisions in rubidium is interpolated by varying the chopping frequency of the pump beam, …


Optical And Electrical Characterization Of Bulk Grown Indium-Gallium-Arsenide Alloys, Austin C. Bergstrom Mar 2010

Optical And Electrical Characterization Of Bulk Grown Indium-Gallium-Arsenide Alloys, Austin C. Bergstrom

Theses and Dissertations

Advances in crystal growth techniques have allowed increased quality in growth of bulk ternary InxGa1-xAs. Here, the optical and electrical properties of samples grown through the vertical Bridgman (or multi-component zone melting growth) method have been investigated through photoluminescence spectroscopy and Hall effect measurements. Indium mole fractions varied from 0.75 for 1. Hall effect measurements at temperatures ranging from 10 to 300 K revealed moderate n-type doping with carrier concentrations ranging from 1.5 to 9.6×1016 cm-3 at 10 to 15 K. Carriers from deep donor levels became appreciable between 50 and 100 K. Hall …


Analysis And Application Of The Bi-Directional Scatter Distribution Function Of Photonic Crystals, Robert B. Lamott Mar 2009

Analysis And Application Of The Bi-Directional Scatter Distribution Function Of Photonic Crystals, Robert B. Lamott

Theses and Dissertations

Photonic crystals (PCs) are periodic structures built from materials with different refractive indices repeated at sub-wavelength intervals, which results in unusual optical characteristics, including narrowband laser protection, and zero reflectance and high absorption anomalies. Most of the research into the optical properties of PCs has concentrated only on the small range of wavelengths and angles where these effects occur. To better understand where all light leaving a PC is scattered, a Complete Angle Scatter Instrument was used to analyze the scatter from three Guided Mode Resonance Filters designed for laser protection. In the plane of incidence, measurements of the scatter …


A Comparative Study Of The Bidirectional Reflectance Distribution Function Of Several Surfaces As A Mid-Wave Infrared Diffuse Reflectance Standard, Bradley Balling Mar 2009

A Comparative Study Of The Bidirectional Reflectance Distribution Function Of Several Surfaces As A Mid-Wave Infrared Diffuse Reflectance Standard, Bradley Balling

Theses and Dissertations

The Bi-Directional Reflectance Distribution Function (BRDF) has a well defined diffuse measurement standard in the ultraviolet, visible, and near infrared (NIR), Spectralon(trade name). It is predictable, stable, repeatable, and has low surface variation because it is a bulk scatterer. In the mid-wave IR (MWIR) and long-wave IR (LWIR), there is not such a well-defined standard. There are well-defined directional hemispherical reflectance (DHR) standards, but the process of integrating BRDF measurements into DHR for the purpose of calibration is problematic, at best. Direct BRDF measurement standards are needed. This study use current calibration techniques to ensure valid measurements and then systematically …


Wave Optics Simulation Of Optically Augmented Retroreflections For Monostatic/Bistatic Detection, John J. Tatar Iii Mar 2009

Wave Optics Simulation Of Optically Augmented Retroreflections For Monostatic/Bistatic Detection, John J. Tatar Iii

Theses and Dissertations

Optical devices interrogated with a laser in the appropriate band can exhibit strong, deterministic reflections of the incident beam. This characteristic could be exploited for optical target detection and identification. The distribution of reflected power is strongly dependent on the geometry of the interrogation scenario, atmospheric conditions, and the cross section of the target optical device. Previous work on laser interrogation systems in this area has focused on analytic models or testing. To the best of my knowledge, I am presenting for the first time an approach to predict reflected power for a variety of interrogation configurations, targets, and propagation …


Production And Characterization Of High Repetition Rate Terahertz Radiation In Femtosecond-Laser-Induced Air Plasma, Michael L. Dexter Mar 2009

Production And Characterization Of High Repetition Rate Terahertz Radiation In Femtosecond-Laser-Induced Air Plasma, Michael L. Dexter

Theses and Dissertations

The purpose of this research was to produce and characterize high repetition rate terahertz radiation in ionized air plasma. An 800 nanometer, 50 femtosecond, 0.35 Watt, 40 KHz, pulsed Ti:Sapphire laser system was used as the source infrared beam. This beam was focused onto a second harmonic generation crystal to produce a collinear, perpendicularly polarized secondary beam at 400 nm. After realigning the polarization of the fundamental to the second harmonic and compensating for group velocity dispersion introduced by the optics, both beams were recombined and focused by a 3.75 cm focal length mirror to form an air plasma. An …


Investigation Of Electrical And Optical Properties Of Bulk Iii-V Ternary Semiconductors, Travis C. Gomez Mar 2009

Investigation Of Electrical And Optical Properties Of Bulk Iii-V Ternary Semiconductors, Travis C. Gomez

Theses and Dissertations

Bulk grown III-V ternary semiconductors of In0.08Ga0.92Sb and In0.15Ga0.85As were investigated through Hall-effect and photoluminescence measurements to determine carrier concentration, mobility, sheet resistivity, and luminescence spectrum. In the past, epitaxial layers of ternary compounds have been grown on binary compound substrates, and thus very limited lattice matched ternary alloys were available. Recently, bulk grown ternary substrates have been developed, and it has presented a renewed interest in using these substrates to grow high quality ternary compounds for use in many next generation optoelectronic devices. The results of photoluminescence (PL) study for the …


Nondestructive Evaluation Of Aircraft Composites Using Terahertz Time Domain Spectroscopy, Christopher D. Stoik Dec 2008

Nondestructive Evaluation Of Aircraft Composites Using Terahertz Time Domain Spectroscopy, Christopher D. Stoik

Theses and Dissertations

Terahertz (THz) time domain spectroscopy (TDS) was assessed as a nondestructive evaluation technique for aircraft composites. Material properties of glass fiber composite were measured using both transmission and reflection configuration. The interaction of THz with a glass fiber composite was then analyzed, including the effects of scattering, absorption, and the index of refraction, as well as effective medium approximations. THz TDS, in both transmission and reflection configuration, was used to study composite damage, including voids, delaminations, mechanical damage, and heat damage. Measurement of the material properties on samples with localized heat damage showed that burning did not change the refractive …


Stimulated Brillouin Scattering Continuous Wave Phase Conjugation In Step-Index Fiber Optics, Steven M. Massey, Justin B. Spring, Timothy H. Russell Jul 2008

Stimulated Brillouin Scattering Continuous Wave Phase Conjugation In Step-Index Fiber Optics, Steven M. Massey, Justin B. Spring, Timothy H. Russell

Faculty Publications

Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber …


Passive Multiple Beam Combination In Optical Fibers Via Stimulated Brillouin Scattering, Kirk C. Brown Mar 2006

Passive Multiple Beam Combination In Optical Fibers Via Stimulated Brillouin Scattering, Kirk C. Brown

Theses and Dissertations

Many active methods of scaling laser brightness have been demonstrated in recent years. The goal of this research was to demonstrate the feasibility of passively combining multiple laser beams using Stimulated Brillouin Scattering (SBS) in a long multimode optical fiber. This method of combination employed a “Gatling gun” fiber array that allowed several collimated beams to be focused by a lens into an optical fiber. The retroreflected Stokes beam is passed through the center of the beam combiner for analysis. In addition to experimental methodology and equipment used, the theoretical and historical background of SBS in optical fibers is provided. …


Characteristics Of Two-Dimensional Triangular And Three-Dimensional Face-Centered-Cubic Photonic Crystals, Jeffery D. Clark Mar 2006

Characteristics Of Two-Dimensional Triangular And Three-Dimensional Face-Centered-Cubic Photonic Crystals, Jeffery D. Clark

Theses and Dissertations

The fabrication of photonic crystals (PhC) with photonic band gaps (PBG) in the visible range is a difficult task due to the small structural feature sizes of the PhC. The particular type of PhC examined is a two-dimensional (2-D) triangular structure with a PBG designed for visible wavelengths with applications in visible integrated photonic systems. This work examines the processes involved and viability of fabricating 2-D triangular PhC's by a variety of techniques: focused ion beam, electron lithography and holographic photo-polymerization/lithography. The design of the PhC was based on a program created to display gap maps for triangular structures. The …


Multiple Channel Laser Beam Combination And Phasing Using Stimulated Brillouin Scattering In Optical Fibers, Brent W. Grime Dec 2005

Multiple Channel Laser Beam Combination And Phasing Using Stimulated Brillouin Scattering In Optical Fibers, Brent W. Grime

Theses and Dissertations

Brightness scaling lasers using stimulated Brillouin scattering (SBS) in optical fibers is explored. A multiple-channel amplifier approach is used to increase the total power of a laser system while avoiding a significant burden on a single channel. The work explores two approaches utilizing both SBS beam cleanup and SBS piston error conjugation. A unique beam combiner that takes advantage of the SBS beam cleanup properties of a long, gradient-index multimode fiber was designed and tested. The beam combiner was developed to combine multiple-channel laser beams simultaneously with high input and output coupling efficiency. The design for the SBS beam combiner …


Optical Characterization And Modeling Of Compositionally Matched Indium Arsenide-Antimonide Bulk And Multiple Quantum Well Semiconductors, Scott C. Phillips Mar 2004

Optical Characterization And Modeling Of Compositionally Matched Indium Arsenide-Antimonide Bulk And Multiple Quantum Well Semiconductors, Scott C. Phillips

Theses and Dissertations

Indium arsenide-antimonide (InAsSb) semiconductors have been determined to emit in the 3-5 micrometer range, the window of interest for countermeasures against infrared electro-optical threats. This experiment set out to cross the bulk to quantum well characterization barrier by optically characterizing two sets of compositionally matched type I quantum well and bulk well material samples. Absorption measurements determined the band gap energy of the bulk samples and the first allowed subband transition for the quantum wells. By collecting absorption spectra at different temperatures, the trend of the energy transitions was described by fitting a Varshni equation to them. The expected result …


Smart Structures For Control Of Optical Surfaces, D. Michael Sobers Jr. Mar 2002

Smart Structures For Control Of Optical Surfaces, D. Michael Sobers Jr.

Theses and Dissertations

The development of lightweight, large-aperture optics is of vital importance to the Department of Defense and the US Air Force for advancing remote sensing applications and improving current capabilities. Synthetic polymer optics offer weight and flexibility advantages over current generation glass mirrors, but require active control to maintain tight surface figure tolerances. This research explores the feasibility of using imbedded piezoelectric materials to control optical surfaces. Membrane-based and stiff piezo-controlled mirrors were constructed to develop and validate control techniques. Test results verified that surface control on the order of tens of wavelengths is possible using these systems.


Single-Sided Noninvasive Inspection Of Multielement Sample Using Fan-Beam Multiplexed Compton Scatter Tomography, Matthew A. Lange Jun 2001

Single-Sided Noninvasive Inspection Of Multielement Sample Using Fan-Beam Multiplexed Compton Scatter Tomography, Matthew A. Lange

Theses and Dissertations

As aircraft age, corrosion forms upon unobservable surfaces, particularly at the junction of the sheet aluminum and the steel rivets used to attach the sheets to the airframe, degrading the aircraft s airworthiness. Previous research developed a noninvasive technique for the evaluation of the material composition of aluminum surfaces, utilizing the information encoded in the energy spectra of Compton-scattered gamma emissions. The spectra are gathered by a six-element, high purity germanium detector array. A, first principles, deterministic computer code is used to reconstruct a two-dimensional map of the electron density of aluminum samples. Previous efforts, to image pure aluminum samples, …


Time-Resolved Photoluminescence Of Inas/Gainsb Quantum Well Lasers, Michael R. Mckay Jun 2001

Time-Resolved Photoluminescence Of Inas/Gainsb Quantum Well Lasers, Michael R. Mckay

Theses and Dissertations

In the world of semiconductor photonic device fabrication, one important objective may be to extract as much light as possible from the device. In these devices, photons are created when electrons recombine with holes by transitioning from a high-energy state to a lower one. Unfortunately, electron-hole recombination does not always result in the formation of a photon. There are three basic types of recombination: the first results in the formation of a photon and is called radiative recombination; and the second and third, known as Shockley-Read-Hall and Auger recombination, result in the heating of the device and do not produce …


Numerical Study Of Optical Delay In Semiconductor Multilayer Distributed Bragg Reflector And Tunable Microcavity Structures, Michael I. K. Etan Mar 2001

Numerical Study Of Optical Delay In Semiconductor Multilayer Distributed Bragg Reflector And Tunable Microcavity Structures, Michael I. K. Etan

Theses and Dissertations

The Air Force has a growing need for the greater bandwidth, speed, and flexibility offered by optical communication links. Future space systems and airborne platforms will most likely use optical signals for efficient power transmission and to minimize the possibility of spoofing and eavesdropping. Tunable optical delays play an important role in the implementation of free space optical communication links. The primary challenge in implementing these systems is the active maintenance of coherent wave fronts across the system's optical aperture. For space applications, this aperture may he hundreds of meters in diameter. Spatial segmentation of a large aperture into smaller …


Photoluminescence Of Single Quantum Well Structures In Gallium Arsenide, Christian A. Bartholomew Mar 2001

Photoluminescence Of Single Quantum Well Structures In Gallium Arsenide, Christian A. Bartholomew

Theses and Dissertations

The continued development of state-of the-art semiconductor technologies and devices by the United States Air Force and the Department of Defense requires accurate and efficient techniques to evaluate and model these new materials. Of particular interest to the Air Force are quantum well structures which can be used for small-scale laser sources in fly-by-light applications, as efficient infrared countermeasures to heat-seeking missiles, or as advanced seekers in optically guided missiles. This thesis provides the initial experimental procedures and data necessary to begin producing accurate yet robust models. Although carrier effective masses could not be evaluated using hot-electron photoluminescence, photoluminescence excitation …


Optical Investigation Of Molecular Beam Epitaxy AlXGa1-XN To Determine Material Quality, Judith L. Mcfall Mar 2000

Optical Investigation Of Molecular Beam Epitaxy AlXGa1-XN To Determine Material Quality, Judith L. Mcfall

Theses and Dissertations

The purpose of this research was to determine the quality of AIGaN samples with various mole fractions of aluminum doped with silicon. The samples utilized for this study were composed of an AIN buffer layer sandwiched between the sapphire substrate and AIGaN epilayer grown by molecular beam epitaxy (MBE). Cathodoluminescence (CL) and photoluminescence (PL) were employed to determine the mole fraction of aluminum in each sample. These techniques also gave insight into the material's nonuniformity, defects, and impurities. CL was run at 4 different beam energies (2,5,10, & 15 keV) with four different currents (1,10,50, & 90 µA) for the …


Output Control Of Vertical Microcavity Light Emitting Device, James A. Lott Apr 1999

Output Control Of Vertical Microcavity Light Emitting Device, James A. Lott

AFIT Patents

An improved intracavity sensor based output power control for microcavity light emitting devices. An improved phototransistor transducer is both configured and physically disposed so that it passively transmits the spurious optical energy output of the microcavity light emitting device while simultaneously generating a light determined electrical signal of easily used large magnitude that is nearly free of error. The base-collector region of the transistor is disposed with a quantum well absorbing layer and produces a signal responsive to a selected emission wavelength. The configuration of the optical energy communicating transducer is arranged so that it is improved in sensitivity and …


Electrical Characterization Of Ion-Implanted 4h-Silicon Carbide, Christian P. Morath Mar 1999

Electrical Characterization Of Ion-Implanted 4h-Silicon Carbide, Christian P. Morath

Theses and Dissertations

Electrical characterization has been performed on ion-implanted p-type 4H-SiC to assess the activation efficiency and implantation-related damage recrystallization with the intention of developing an implantation/annealing scheme. Low doped (Na - Nd = 5x10(exp 15)/cu cm) epitaxial p-type layers grown by MOCVD were implanted with Al or B at doses ranging from 1x10(exp 13) to 1x10(exp 14)/sq cm at room temperature or 500 deg. C. The electrical technique of Temperature Dependent Hall Effect (TDHE) indicated that Al and B act as shallow acceptors 4H-SiC with ionization energies of ^252 and ^285 meV, respectively. The highest activation efficiency for Al and B …


Experimental Investigation Of Nonlinear Dynamics In Single Mode Semiconductor Laser Diodes With Phase Conjugate Feedback, Gordon T. Hengst Aug 1997

Experimental Investigation Of Nonlinear Dynamics In Single Mode Semiconductor Laser Diodes With Phase Conjugate Feedback, Gordon T. Hengst

Theses and Dissertations

The semiconductor laser diode offers a unique system to investigate nonlinear dynamics when optical feedback is applied. Although there is extensive research of laser diodes with optical feedback from normal dielectric mirrors, very little has been done experimentally to analyze the effects of degenerate phase conjugate feedback from a BaTiO3 crystal. This research experimentally investigated the dynamics of a single-mode laser diode with weak phase conjugate feedback using both the self-pumped and double phase conjugate geometries. The experimental results validated a mathematical model which numerically evaluates the Lang-Kobayahsi coupled differential equations. The model simulated the nonlinear behavior of a …


Investigation Of The Optical Properties Of Ordered Semiconductor Materials, Jack E. Mccrae Jr. Jan 1997

Investigation Of The Optical Properties Of Ordered Semiconductor Materials, Jack E. Mccrae Jr.

Theses and Dissertations

Optical studies have been conducted upon CdGeAs2 and ZnGeP2, two of the most promising semiconductors being developed for mid-infrared non-linear optics applications. These experiments included photoluminescence (PL) studies of both compounds as well as photoreflectance (PR) measurements upon CdGeAs2. In addition, Hall effect measurements were carried out upon CdGeAs2, to aid in interpretation of the optical data. PL was measured as a function of laser power, sample temperature, and crystal orientation for CdGeAs2. One broad weak peak near 0.38 eV, and another somewhat narrower and often far brighter peak near 0.57 …


Design Of Gradient Index Optical Thin Films, Jeffrey J. Druessel Jun 1996

Design Of Gradient Index Optical Thin Films, Jeffrey J. Druessel

Theses and Dissertations

Gradient index thin films provide greater flexibility for the design of optical coatings than the more conventional 'layer' films. In addition, gradient index films have higher damage thresholds and better adhesion properties. This dissertation presents an enhancement to the existing inverse Fourier transform gradient index design method, and develops a new optimal design method for gradient index films using a generalized Fourier series approach. The inverse Fourier transform method is modified to include use of the phase of the index profile as a variable in rugate filter design. Use of an optimal phase function in Fourier-based filter designs reduces the …


Photoluminescence And Electroluminescence Of Erbium And Neodymium Implanted Semiconductors, James R. Hunter Dec 1995

Photoluminescence And Electroluminescence Of Erbium And Neodymium Implanted Semiconductors, James R. Hunter

Theses and Dissertations

Low temperature photoluminescence (PL) and electroluminescence (EL) measurements were used to study the excitation of erbium- and neodymium-implanted GaAs and AlxGa1-xAs (x=0. 1, 0.3) pn-junctions. The rare-earth (RE) emissions were investigated as a function of ion dose, aluminum mole fraction, laser excitation power, and applied forward bias voltage for the implanted samples. Low temperature PL was also measured from Er doped silicon grown by the metalorganic chemical vapor-phase deposition (MOCVD) method using various growth parameters.. The MOCVD-grown Si samples were studied as a function of metalorganic source temperature, silane (SiH4) flow, growth time, and …


Optical Characterization Of Indium Arsenide Antimonide Semiconductors Grown By Molecular Beam Epitaxy, Michael A. Marciniak Sep 1995

Optical Characterization Of Indium Arsenide Antimonide Semiconductors Grown By Molecular Beam Epitaxy, Michael A. Marciniak

Theses and Dissertations

The material parameters and crystalline quality of undoped, MBE-grown InAs1-xSbx nearly lattice-matched to (100) GaSb (-0.617% ≤ Δ a-a ≤ +0.708%) similar to material used for mid-infrared semiconductor lasers were determined by optical characterization. Absorption measurements at temperatures between 6-295 K determined the energy gap and wavelength-dependent absorption coefficient for each sample. The compositional dependence of the energy gap was anomalous when compared to previously reported data, suggesting phase separation existed in the material. The samples were also studied by temperature- and excitation-dependent photoluminescence (PL), which, for the majority of cases, showed only a single band-edge peak, …