Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physical Sciences and Mathematics

Outstanding Advantages, Current Drawbacks, And Significant Recent Developments In Mechanochemistry: A Perspective View, Silvina Pagola Jan 2023

Outstanding Advantages, Current Drawbacks, And Significant Recent Developments In Mechanochemistry: A Perspective View, Silvina Pagola

Chemistry & Biochemistry Faculty Publications

Although known since antiquity, mechanochemistry has remained dormant for centuries. Nowadays, mechanochemistry is a flourishing research field at the simultaneous stages of gathering data and (often astonishing) observations, and scientific argumentation toward their analysis, for which the combination of interdisciplinary expertise is necessary. Mechanochemistry’s implementation as a synthetic method is constantly increasing, although it remains far from being fully exploited, or understood on the basis of fundamental principles. This review starts by describing many remarkable advantages of mechanochemical reactions, simplifying and “greening” chemistry in solutions. This description is followed by an overview of the current main weaknesses to be addressed …


Synthesis And Self-Assembling Properties Of Carbohydrate- And Diarylethene-Based Photoswitchable Molecular Gelators, Pramod Aryal, Joedian Morris, Surya B. Adhikari, Jonathan Bietsch, Guijun Wang Jan 2023

Synthesis And Self-Assembling Properties Of Carbohydrate- And Diarylethene-Based Photoswitchable Molecular Gelators, Pramod Aryal, Joedian Morris, Surya B. Adhikari, Jonathan Bietsch, Guijun Wang

Chemistry & Biochemistry Faculty Publications

Carbohydrate-based low-molecular-weight gelators are interesting new materials with many potential applications. These compounds can be designed to include multiple stimuli-responsive functional groups. In this study, we designed and synthesized several chemically responsive bola-glycolipids and dimeric carbohydrate- and diarylethene-based photoswitchable derivatives. The dimeric glycolipids formed stable gels in a variety of solvent systems. The best performing gelators in this series contained decanedioic and dithienylethene (DTE) spacers, which formed gels in eight and nine of the tested solvents, respectively. The two new DTE-containing esters possessed interesting photoswitching properties and DTE derivative 7 was found to have versatile gelation properties in many solvents, …


Synthesis Of A Series Of Trimeric Branched Glycoconjugates And Their Applications For Supramolecular Gels And Catalysis, Jonathan Bietsch, Anji Chen, Dan Wang, Guijun Wang Jan 2023

Synthesis Of A Series Of Trimeric Branched Glycoconjugates And Their Applications For Supramolecular Gels And Catalysis, Jonathan Bietsch, Anji Chen, Dan Wang, Guijun Wang

Chemistry & Biochemistry Faculty Publications

Carbohydrate-derived molecular gelators have found many practical applications as soft materials. To better understand the structure and molecular gelation relationship and further explore the applications of sugar-based gelators, we designed and synthesized eight trimeric branched sugar triazole derivatives and studied their self-assembling properties. These included glucose, glucosamine, galactose, and maltose derivatives. Interestingly, the gelation properties of these compounds exhibited correlations with the peripheral sugar structures. The maltose derivative did not form gels in the tested solvents, but all other compounds exhibited gelation properties in at least one of the solvents. Glucose derivatives showed superior performance, followed by glucosamine derivatives. They …


Synthesis And Characterization Of 4,6-Protected Glucosamine Derivatives And Branched Glycoconjugates, Jonathan Bietsch Dec 2021

Synthesis And Characterization Of 4,6-Protected Glucosamine Derivatives And Branched Glycoconjugates, Jonathan Bietsch

Chemistry & Biochemistry Theses & Dissertations

Low molecular weight gelators (LMWGs) are small molecules that self-assemble in appropriate solvents to form three dimensional networks that immobilize the solvent, creating a supramolecular gel. The self-assembly of LMWGs occurs through non-covalent interactions such as hydrogen bonding, aromatic interactions, donor-acceptor interactions, Van der Waals interactions, hydrophobic forces, halogen bonding, etc. Due to self-assembly occurring through reversible non-covalent interactions, supramolecular gels can undergo a gel to solution transformation. Because of this, these materials can be sensitive to external stimuli such as temperature changes, pH changes, and other stimuli that effect non-covalent interactions. This makes the synthesis of LMWG’s an appealing …


Recently Developed Carbohydrate Based Gelators And Their Applications, Joedian Morris, Jonathan Bietsch, Kristen Bashaw, Guijun Wang Jan 2021

Recently Developed Carbohydrate Based Gelators And Their Applications, Joedian Morris, Jonathan Bietsch, Kristen Bashaw, Guijun Wang

Chemistry & Biochemistry Faculty Publications

Carbohydrate based low molecular weight gelators have been an intense subject of study over the past decade. The self-assembling systems built from natural products have high significance as biocompatible materials and renewable resources. The versatile structures available from naturally existing monosaccharides have enriched the molecular libraries that can be used for the construction of gelators. The bottom-up strategy in designing low molecular weight gelators (LMWGs) for a variety of applications has been adopted by many researchers. Rational design, along with some serendipitous discoveries, has resulted in multiple classes of molecular gelators. This review covers the literature from 2017-2020 on monosaccharide …


Tetrathiafulvalene: A Gate To The Mechanochemical Mechanisms Of Electron Transfer Reactions, Richard Chen, Mehmet Kerem Gokus, Silvina Pagola Jan 2020

Tetrathiafulvalene: A Gate To The Mechanochemical Mechanisms Of Electron Transfer Reactions, Richard Chen, Mehmet Kerem Gokus, Silvina Pagola

Chemistry & Biochemistry Faculty Publications

This report describes aspects of our previous studies of the mechanochemical synthesis of charge transfer complexes of the electron donor tetrathiafulvalene, which are relevant to the use of laboratory X-ray powder diffraction for ex situ monitoring of mechanochemical reactions toward investigating their mechanisms. In particular, the reaction of tetrathiafulvalene and chloranil was studied under neat mechanochemical conditions and liquid-assisted grinding with diethyl ether (1 μL/mg). The product in both cases is the green tetrathiafulvalene chloranil polymorph and the mechanism of the redox reaction is presumably the same. However, while the kinetic profile of the neat mechanochemical synthesis was fitted with …


Observation Of Reduced Thermal Conductivity In A Metal-Organic Framework Due To The Presence Of Adsorbates, Hasan Babaei, Mallory E. Decoster, Minyoung Jeong, Zeinab M. Hassan, Timur Islamoglu, Helmut Baumgart, Alan J.H. Mcgaughey, Engelbert Redel, Omar K. Farha, Patrick E. Hopkins, Jonathan A. Malen, Christopher E. Wilmer Jan 2020

Observation Of Reduced Thermal Conductivity In A Metal-Organic Framework Due To The Presence Of Adsorbates, Hasan Babaei, Mallory E. Decoster, Minyoung Jeong, Zeinab M. Hassan, Timur Islamoglu, Helmut Baumgart, Alan J.H. Mcgaughey, Engelbert Redel, Omar K. Farha, Patrick E. Hopkins, Jonathan A. Malen, Christopher E. Wilmer

Electrical & Computer Engineering Faculty Publications

Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 – 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, …


Toward Unraveling The Mechanisms Of “Green” Mechanochemical Reactions, Richard Chen, Mehmet Kerem Gokus Feb 2019

Toward Unraveling The Mechanisms Of “Green” Mechanochemical Reactions, Richard Chen, Mehmet Kerem Gokus

Undergraduate Research Symposium

The mechanical processing of solids, such as milling or grinding powders, often leads to mechanochemical reactions. Mechanochemistry affords “green” synthetic routes avoiding or reducing the use of solvents, thus providing environmentally friendly and cost-effective synthetic alternatives for many materials. The solid-state reactants are usually ground together with small quantities of organic solvents, called “liquid assisted grinding” (LAG). LAG increases the reaction rates, it can yield products from otherwise unreactive mixtures, it increases the products crystallinity, and it selectively leads to crystal structures (polymorphs) of the products, depending on the quantities and physicochemical properties of the liquids used in LAG.

Mechanochemistry …


Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day Jan 2016

Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day

Chemistry & Biochemistry Faculty Publications

Background

Application of modern biomass pyrolysis methods for production of biofuels and biochar is potentially a significant approach to enable global carbon capture and sequestration. To realize this potential, it is essential to develop methods that produce biochar with the characteristics needed for effective soil amendment.

Methods

Biochar materials were produced from peanut hulls and pine wood with different pyrolysis conditions, then characterized by cation exchange (CEC) capacity assays, nitrogen adsorption–desorption isotherm measurements, micro/nanostructural imaging, infrared spectra and elemental analyses.

Results

Under a standard assay condition of pH 8.5, the CEC values of the peanut hull-derived biochar materials, ranging from …


Synthesis And Characterization Of Sugar Based Low Molecular Weight Gelators And The Preparation Of Chiral Sulfinamides, Hari Prasad Reddy Mangunuru Jan 2014

Synthesis And Characterization Of Sugar Based Low Molecular Weight Gelators And The Preparation Of Chiral Sulfinamides, Hari Prasad Reddy Mangunuru

Chemistry & Biochemistry Theses & Dissertations

Low molecular weight gelators (LMWGs) have received considerable attention in the field of chemistry from last few decades. These compounds form self-assembled fibrous networks like micelles, cylindrical, sheets, fibers, layers and so on. The fibrous network entraps the solvent and forms gel, because of the self-assembly phenomenon and their demonstrated potential uses in a variety of areas, ranging from environmental to medicinal applications.

Sugars are good starting materials to synthesize the new class of LMWG's, because these are different from some expensive materials, these are natural products. We have synthesized and characterized the LMGS's based on D-glucose and D …


The Use Of Fourier Transform (Ft) Surface-Enhanced Raman Scattering For Biochemical Analysis, Robert Butler Jeffers Jul 2009

The Use Of Fourier Transform (Ft) Surface-Enhanced Raman Scattering For Biochemical Analysis, Robert Butler Jeffers

Chemistry & Biochemistry Theses & Dissertations

Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that has created exciting opportunities in the field of bioanalytical chemistry, where it combines ultrasensitive detection of biologically relevant molecules with vibrational spectroscopy. Due to the difficulties in preparing reproducible SERS active substrates, SERS has been mainly used as a qualitative tool. In order for SERS to be utilized as a viable tool for quantitative analysis, simple, facile SERS substrates which generate clean, highly reproducible signals must be developed. This dissertation deals with the evaluation of three different methods of SERS that led to the development of a novel substrate for …


The Shape Of Pulverized Bituminous Vitrinite Coal Particles, Jonathan P. Mathews, Patrick G. Hatcher, Alan W. Scaroni Jan 2007

The Shape Of Pulverized Bituminous Vitrinite Coal Particles, Jonathan P. Mathews, Patrick G. Hatcher, Alan W. Scaroni

Chemistry & Biochemistry Faculty Publications

The shape of pulverized bituminous coal particles (vitrinites) was determined by optical and laser light scattering. Vitrain samples were collected from obvious tree remains located in the ceilings of two Appalachian coal mines. Wet sieving produced narrow size cuts. The particles were determined to be oblong or blocky in shape, with average length-to-width ratio of 1.7 and sphericity of 0.78. They were analogous in shape to a square ended, rectangular "house brick". The two bituminous coals and different size cuts of each coal had essentially the same shape parameters. Characteristic heating times and terminal velocities were higher by 22 and …


Chemical Vapor Deposited Diamond Films For Self-Referencing Fiber Optic Raman Probes [Erratum], Sacharia Albin, Jainli Zheng, Bing Xiao, John B. Cooper, Robert B. Jeffers, Sonia Antony Jan 2004

Chemical Vapor Deposited Diamond Films For Self-Referencing Fiber Optic Raman Probes [Erratum], Sacharia Albin, Jainli Zheng, Bing Xiao, John B. Cooper, Robert B. Jeffers, Sonia Antony

Chemistry & Biochemistry Faculty Publications

No abstract provided.


Chemical Vapor Deposited Diamond Films For Self-Referencing Fiber Optic Raman Probes, Sacharia Albin, Jianli Zheng, Bing Xiao, John B. Cooper, Robert B. Jeffers, Sonia Antony Jan 2003

Chemical Vapor Deposited Diamond Films For Self-Referencing Fiber Optic Raman Probes, Sacharia Albin, Jianli Zheng, Bing Xiao, John B. Cooper, Robert B. Jeffers, Sonia Antony

Chemistry & Biochemistry Faculty Publications

Diamond thin films grown by the microwave plasma enhances chemical vapor deposition (CVD) process have been investigated as an internal reference in fiber optic remote Raman sensing. The growth parameters have been optimized for diamond thin films on quarts substrates using a gas mixture of methane, carbon dioxide, and hydrogen. The resulting films exhibit essentially no Raman spectral background while exhibiting a strong Raman peak at 1332 cm-¹. The films are used as an internal reference in the quantitative measurement of chemical concentration using remote fiber optic Raman sensing. Internal referencing is accomplished by normalizing all spectral intensities …


A Diamond Thin Film Flow Sensor, Sacharia Albin, John C. Hagwood, John B. Cooper, David L. Gray, Scott D. Martinson, Michael A. Scott Jan 1995

A Diamond Thin Film Flow Sensor, Sacharia Albin, John C. Hagwood, John B. Cooper, David L. Gray, Scott D. Martinson, Michael A. Scott

Electrical & Computer Engineering Faculty Publications

We present the results of theoretical modeling and experimental testing of a diamond thin film sensor for flow studies. It is shown that the high thermal conductivity of a diamond film can enhance the frequency response of the flow sensor. One-dimensional heat diffusion equation was solved using the finite difference method for determining the frequency response. Two different sensor structures were analyzed: a Ni film on a quartz substrate (Ni/Q) and an intermediate layer of diamond film between the Ni film and quartz substrate (Ni/D/Q). The theoretical model predicts a frequency response for the Ni/D/Q sensor higher than that of …


Picosecond Laser Pulse Irradiation Of Crystalline Silicon, K. L. Merkle, H. Baumgart, R.H. Uebbing, F. Phillipp Jan 1982

Picosecond Laser Pulse Irradiation Of Crystalline Silicon, K. L. Merkle, H. Baumgart, R.H. Uebbing, F. Phillipp

Electrical & Computer Engineering Faculty Publications

Morphology changes introduced by picosecond laser pulses at λ = 532 nm and 355 nm in (111) and (100) silicon samples are studied by means of optical and high-voltage electron microscopy. Depending on energy fluence, orientation and wavelength, amorphous or highly defective regions may be created. From an analysis of damage thresholds and damage depth distributions it is concluded that melting and energy confinement precedes the formation of the structural changes.


Luminescence In Slipped And Dislocation-Free Laser-Annealed Silicon, R.H. Uebbing, P. Wagner, H. Baumgart, H. J. Queisser Jan 1980

Luminescence In Slipped And Dislocation-Free Laser-Annealed Silicon, R.H. Uebbing, P. Wagner, H. Baumgart, H. J. Queisser

Electrical & Computer Engineering Faculty Publications

Photoluminescence of cw laser-annealed silicon shows a dramatic difference in electronic behavior of the reconstructed material depending upon either creation or suppression of dislocations. Beyond a critical exposure time slip appears, and the luminescence of these samples is dominated by dislocation-related defect levels.