Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Role Of Sulfur Dioxide In Stratospheric Aerosol Formation Evaluated By Using In Situ Measurements In The Tropical Lower Stratosphere, A. W. Rollins, T. D. Thornberry, L. A. Watts, P. Yu, K. H. Rosenlof, M. Mills, E. Baumann, F. R. Giorgetta, T. V. Bui, M. Höpfner, P. F. Bernath May 2017

The Role Of Sulfur Dioxide In Stratospheric Aerosol Formation Evaluated By Using In Situ Measurements In The Tropical Lower Stratosphere, A. W. Rollins, T. D. Thornberry, L. A. Watts, P. Yu, K. H. Rosenlof, M. Mills, E. Baumann, F. R. Giorgetta, T. V. Bui, M. Höpfner, P. F. Bernath

Chemistry & Biochemistry Faculty Publications

Stratospheric aerosols (SAs) are a variable component of the Earth's albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO2) in maintaining background SAs has been debated for decades without in situ measurements of SO2 at the tropical tropopause to inform this issue. Here we clarify the role of SO2 in maintaining SAs by using new in situ SO2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO2 mixing ratios to estimate the global flux of …


Impacts Of Projected Climate Change Over The Lake Champlain Basin In Vermont, Justin Guilbert, Brian Beckage, Jonathan M. Winter, Radley M. Horton, Timothy Perkins, Arne Bomblies Jan 2014

Impacts Of Projected Climate Change Over The Lake Champlain Basin In Vermont, Justin Guilbert, Brian Beckage, Jonathan M. Winter, Radley M. Horton, Timothy Perkins, Arne Bomblies

College of Agriculture and Life Sciences Faculty Publications

The Lake Champlain basin is a critical ecological and socioeconomic resource of the northeastern United States and southern Quebec, Canada. While general circulation models (GCMs) provide an overview of climate change in the region, they lack the spatial and temporal resolution necessary to fully anticipate the effects of rising global temperatures associated with increasing greenhouse gas concentrations. Observed trends in precipitation and temperature were assessed across the Lake Champlain basin to bridge the gap between global climate change and local impacts. Future shifts in precipitation and temperature were evaluated as well as derived indices, including maple syrup production, days above …