Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

Journal

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 75

Full-Text Articles in Physical Sciences and Mathematics

Policy Overview (June, 2024) Jul 2024

Policy Overview (June, 2024)

Bulletin of Chinese Academy of Sciences (Chinese Version)

No abstract provided.


Insights On Strategy And Approach For China To Construct A Modern Integrated Circuits Industrial System, Ximing Yin, Beibei Zhang, Tailun Chen, Jiang Yu, Jin Chen Jul 2024

Insights On Strategy And Approach For China To Construct A Modern Integrated Circuits Industrial System, Ximing Yin, Beibei Zhang, Tailun Chen, Jiang Yu, Jin Chen

Bulletin of Chinese Academy of Sciences (Chinese Version)

The integrated circuit (IC) industry is highly complex and systematic, and its key core technology breakthroughs are highly dependent on the support of systematic capabilities. The West especially the United States has accelerated the promotion of the “small-yard, high-fence” strategy, the “New Washington Consensus”, the “de-risking”, and other systematic policies to curb China’s rise. China’s IC industry chain is facing extreme risks such as rupture or blockage. Meanwhile, facing the new mission and requirements of Chinese modernization and new-quality productivity, China needs to accelerate the modernization of the IC industry with new development paradigms, new strategies, and new approaches. Based …


Deep Integration Of Technological Innovation And Industrial Innovation In Modern Industrial System: Inspiration From Global New Generation Lithography Systems, Jiang Yu, Feng Chen, Yue Guo Jul 2024

Deep Integration Of Technological Innovation And Industrial Innovation In Modern Industrial System: Inspiration From Global New Generation Lithography Systems, Jiang Yu, Feng Chen, Yue Guo

Bulletin of Chinese Academy of Sciences (Chinese Version)

Utilizing technological innovation to lead the construction of a modern industrial system is a strategic choice for seizing the opportunities of the new round of technological revolution and industrial transformation. It is also a necessary step for winning the strategic initiative towards high-level self-reliance and self-improvement. Technological innovation is the intrinsic driving force behind industrial innovation, and industrial innovation is the value embodiment of technological innovation. The deep integration of technological innovation and industrial innovation is the key to constructing and improving a modern industrial system. Taking the global extreme ultra-violet (EUV) lithography system as an example, based on the …


News Flash Jul 2024

News Flash

Bulletin of Chinese Academy of Sciences (Chinese Version)

No abstract provided.


Analysis On Development Trend Of Global Hypersonic Technology, Xiaorong Huang, Yunwei Chen, Haichen Zhou Jun 2024

Analysis On Development Trend Of Global Hypersonic Technology, Xiaorong Huang, Yunwei Chen, Haichen Zhou

Bulletin of Chinese Academy of Sciences (Chinese Version)

Hypersonic technology is a key technology in the aerospace field in the future and is of very important strategic and forward-looking significance. Using bibliometric methods, it is found that research on hypersonic technology is mainly concentrated in the military field, among which power propulsion technology, navigation guidance and control technology, thermal protection technology and new materials are important research directions in this field. After sorting out the research and development situation of various countries, it is found that the relevant core technologies related to the development of hypersonic weapons are still the focus of future research. At the same time, …


Technology Innovation Is The Key To Future Space Science Missions, Ji Wu May 2024

Technology Innovation Is The Key To Future Space Science Missions, Ji Wu

Bulletin of Chinese Academy of Sciences (Chinese Version)

Space science is one of the important space activities of China together with space technology and space application. Although it is a space program aimed at scientific discovery and breakthrough, with the development of technology and the increasing number of achievements received in the past, space science missions require more and more technological innovation to achieve their goals. This study first reviews the development trend of space science missions since their birth, then analyzes the cultivation process of space science mission proposals with technological innovation and the responsibilities of the chief scientist leading such tasks, and finally analyzes and proposes …


New Frontier In Race For Deep Space Exploration: Lunar Water Resources, Yong Wei, Honglei Lin, Fei He, Hui Zhang May 2024

New Frontier In Race For Deep Space Exploration: Lunar Water Resources, Yong Wei, Honglei Lin, Fei He, Hui Zhang

Bulletin of Chinese Academy of Sciences (Chinese Version)

Deep space exploration has become the commanding heights of science and technology competition. Since the beginning of the 21st century, China has successfully completed the lunar exploration missions of “orbiting, landing, and returning” in just twenty years, and upgraded to a new roadmap of “survey, construction, and utilization”. Meanwhile, lunar exploration worldwide has shown a trend towards normalization and commercialization. The research on lunar water resources has sparked widespread interest and intense competition among countries and space agencies, marking a new focus in human’s deep space exploration. The exploration of lunar water can help reveal crucial processes in the formation …


Winning Battle For Key And Core Technologies In Emerging Fields—Inspiration Based On 863 Program Related Projects, Guangzu Bai, Li Li, Hongfei Meng, Qiang Wang, Xiaoyang Cao, Anrong Liu, Bo Cheng, Mimi Zhan, Jing Li, Leiei Cui, Xiangwan Du May 2024

Winning Battle For Key And Core Technologies In Emerging Fields—Inspiration Based On 863 Program Related Projects, Guangzu Bai, Li Li, Hongfei Meng, Qiang Wang, Xiaoyang Cao, Anrong Liu, Bo Cheng, Mimi Zhan, Jing Li, Leiei Cui, Xiangwan Du

Bulletin of Chinese Academy of Sciences (Chinese Version)

Emerging technology fields have become the main battleground for strategic competition among major powers today, with key and core technologies serving as crucial approach in shaping a nation’s international competitive advantage. This study, from the perspective of national strategy, profoundly understands the significant importance of winning the key and core technology battle in emerging fields. Based on this understanding, it starts with a comparison between the implementation background of the 863 Program and the current reality. It systematically summarizes valuable experiences from projects aimed at advancing key and core technologies in emerging fields, and puts forward reflections and suggestions for …


Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang Apr 2024

Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang

Makara Journal of Technology

Thermoelectric devices have been widely used in various applications, including cooling and power generation. The potential application of thermoelectric cooling systems has been studied. However, these systems still face challenges in achieving optimal performance compared with other cooling systems. Several factors, including the hot-side cooling method, influence the performance of thermoelectric systems. This study aimed to investigate the effects of different hot-side cooling methods on the thermoelectric performance and thermal behavior of thermoelectric cooling systems. The testing methods involved the combination of the thermoelectric module with five hot-side heat exchangers, including a square heatsink, a round heatsink, a two-pipe heat …


High Powered Rocket Modification, Joshua Gage Apr 2024

High Powered Rocket Modification, Joshua Gage

SACAD: John Heinrichs Scholarly and Creative Activity Days

Rocketry has always been a fun challenge for me. Since not only was I able to learn something new every time I did it, but I was able to do something with my hands as well. One area that has been very challenging for me is how to put a tracker onto a rocket that has no electronics bay. And studying for the L2 Certification tests. And this poster shows my thoughts and process I did to pass my L2 Certification Flight.


Igniting Passion:​ A Detailed Journey Through Rocketry Course Activities, Krish M. Patel, Hannah Caycedo, Joshua Gage, Josi Maness, Kevin Park, Mufeng Shen Apr 2024

Igniting Passion:​ A Detailed Journey Through Rocketry Course Activities, Krish M. Patel, Hannah Caycedo, Joshua Gage, Josi Maness, Kevin Park, Mufeng Shen

SACAD: John Heinrichs Scholarly and Creative Activity Days

This course is a semester-long adventure in rocketry, led by Dr. Paul Adams. It covers everything about building and flying rockets, starting from the basics to more advanced rocketry. Students learn how to build rockets and use equipment used I payload systems like and altimeter and a GPS. We also learned about the importance of safety involved with building and launching rockets.


Improving The Structural And Physical Yield Of Aluminum By Repeated Additions Of Iron Carbide, Fayrooz K. Albasri Sep 2023

Improving The Structural And Physical Yield Of Aluminum By Repeated Additions Of Iron Carbide, Fayrooz K. Albasri

Al-Bahir Journal for Engineering and Pure Sciences

Aluminum suffers from low hardness and some ductility when thermal sintering which requires reinforcement with carbide or ceramic materials as Iron FeC with volumetric properties (2,4,6,8,10 )%. For purpose of the pressing process after mixing the two powder together, a scanning electron microscope examination performed for the prepared samples and found that there is a surface and structural consistency between aluminum and iron carbide and the best homogeneity is at10 % of carbide. Also some physical tests conducted for prepared samples and the results of the real density showed that the addition of iron carbide increases the density gradually and …


Using Powder Metallurgy Process To Produce Ceramic-Metal Composites, Ibrahim F. Abed, Salih, Y. Darweesh Sep 2023

Using Powder Metallurgy Process To Produce Ceramic-Metal Composites, Ibrahim F. Abed, Salih, Y. Darweesh

Al-Bahir Journal for Engineering and Pure Sciences

Pressing powders and engineering materials is an innovative method for producing samples with a low cost and multiple industrial applications. In the current article, copper metal was added in different volume ratios to a ceramic material, alumina, for the purpose of improving the properties of alumina, by pressing with a hydraulic press. Where the results of the article showed that the percentage of true porosity after sintering is from (26-13)% with a copper content of (5%) to (25%). As for the apparent porosity after sintering, it decreased from (26-9)% at a copper content of (5-25)%, while the water absorption was …


Finite Element Analysis Of A Coconut (Cocos Nucifera L.) Climbing Mechanism, Arjay O. Afan, Omar F. Zubia, Adrian A. Borja, Ralph Kristoffer B. Gallegos Jun 2023

Finite Element Analysis Of A Coconut (Cocos Nucifera L.) Climbing Mechanism, Arjay O. Afan, Omar F. Zubia, Adrian A. Borja, Ralph Kristoffer B. Gallegos

The Philippine Agricultural Scientist

A coconut climber mechanism was subjected to Finite Element Analysis (FEA) to improve its overall design and analyze its strength characteristics. The von Mises stress, total deformation, and factor of safety were evaluated using static structural analysis for the seat and pedal assemblies of the mechanism. The design has a minimum yielding factor of safety of 7.03 for the seat assembly and 12.09 for the pedal assembly. If aluminum is used as an alternative to steel, the prototype's weight can be reduced to at least 64.56% without compromising its strength properties. The weight reduction by using aluminum is expected to …


Air And Air-Steam Gasification Of Coconut Shell In A Fluidized Bed, Keynty Boy V. Magtoto, Rossana Marie C. Amongo, Sergio C. Capareda, Ronaldo B. Saludes Mar 2023

Air And Air-Steam Gasification Of Coconut Shell In A Fluidized Bed, Keynty Boy V. Magtoto, Rossana Marie C. Amongo, Sergio C. Capareda, Ronaldo B. Saludes

The Philippine Agricultural Scientist

Coconut shells’ abundance in tropical countries, along with its high volatile combustible matter (83.51%) and energy content (18.68 MJ kg-1) make it a good biomass resource and a promising feedstock for gasification. In gasification, different mediums such as air, steam, oxygen, or their combinations can be used to react with the solid carbon and heavy hydrocarbons of biomass. Hence, the effects of using an air-steam mixture as a gasifying agent for the bench-scale fluidized bed gasification of coconut shells were studied. The steam-to-carbon ratio (SCR) was varied to evaluate its effect on the resulting syngas quality and gasification …


Effects Of Drying Temperature And Tempering Duration On Hybrid Rice Seed Germination, Thin-Layer Drying Characteristics, And Power Requirement, Rina A. Bawar, Joanne P. Foliente, Kevin F. Yaptenco, Mitchie Ann L. Cabiles Mar 2023

Effects Of Drying Temperature And Tempering Duration On Hybrid Rice Seed Germination, Thin-Layer Drying Characteristics, And Power Requirement, Rina A. Bawar, Joanne P. Foliente, Kevin F. Yaptenco, Mitchie Ann L. Cabiles

The Philippine Agricultural Scientist

This study presents the results of thin-layer drying tests for hybrid rice seeds. The independent factors were drying air temperature (45, 55, and 65 °C) and tempering duration (1, 2, and 4 h), while the dependent parameters were seed germination and drying characteristics, including drying rate, total and effective drying operation times, and power requirement. Considering one hybrid and 3 mo storage period after drying, the results showed that samples continuously dried at 45 and 55°C resulted in 91 and 86% germination percentages, respectively, which were above the acceptable Philippine national standard of at least 85%. However, when tempered for …


Development Of Spintronic Materials By Stoichiometric Engineering Of Cofeval, Gavin Baker, Matthew Wieberdink, Jax Wysong Jan 2023

Development Of Spintronic Materials By Stoichiometric Engineering Of Cofeval, Gavin Baker, Matthew Wieberdink, Jax Wysong

The Journal of Undergraduate Research

We have carried out an experimental investigation of the Heusler Alloy CoFeVAl and its two variants Co1.5Fe0.5VAl and CoFeVAl0.5Si0.5 for their potential application in the field of spintronics. Heusler alloys are investigated for their many remarkable properties, including half-metallicity and spin-gapless semi-conductivity. Spintronic technology utilizes the intrinsic spin of an electron for information storage and manipulation in solid state devices. We synthesized these alloys using arc-melting and annealing. All three alloys were found to have cubic crystal structures with varying disorders. The parent alloy CoFeVAl shows a magnetic transition at 65 K. However, …


Structural And Magnetic Properties Of Heusler Alloys: Fecrmn1-Xvxal (X = 0, 0.5, 0.75), Jax Wysong, Gavin Baker Jan 2023

Structural And Magnetic Properties Of Heusler Alloys: Fecrmn1-Xvxal (X = 0, 0.5, 0.75), Jax Wysong, Gavin Baker

The Journal of Undergraduate Research

Heusler alloys are important to investigate due to their multiple interesting properties including half-metallicity and spin-gapless semi conductivity. Materials exhibiting these properties are desired for spin-transport-based devices. These devices provide the storing and delivering of information through the utilization of the spin property of electrons. The magnetic and electronic band properties of these alloys can be modified by tuning the elemental composition. This work investigates structural and magnetic properties of the three Heusler alloys FeCrMnAl, FeCrMn0.5V0.5Al, and FeCrMn0.25V0.75Al. It was found that all three alloys crystallize in cubic crystal structure with an …


Smart Grid Control: Demand Side Management In Household Refrigerators As A Tool For Load Shifting, Anogh Utkalika Zaman, James Doyle May 2022

Smart Grid Control: Demand Side Management In Household Refrigerators As A Tool For Load Shifting, Anogh Utkalika Zaman, James Doyle

Macalester Journal of Physics and Astronomy

With improved supply of renewable sources of energy the focus has shifted away from simply producing clean energy to efficient consumption of energy. Until cheaper methods of energy storage are developed, Demand Side Management (DSM) is the best option for maximising energy efficiency. This paper proposes a method of turning regular refrigerators into smart demand response fridges. First, we develop an algorithm that accounts for small fluctuations in price and switches the device for optimal performance and lowered running cost. Then, we use longer price fluctuations to predict suitable times for pre-cooling and investigate the reduction in price as a …


Sufficient Condition For The Possibility Of Completing The Pursuit, Nodirbek Umrzaqov Dec 2021

Sufficient Condition For The Possibility Of Completing The Pursuit, Nodirbek Umrzaqov

Scientific Bulletin. Physical and Mathematical Research

In this paper, the problem of chase is represented by a system of linear differential equations of motion dynamics. In this case, there is an integral limit to the control parameter of the evader, and a geometric limit to the control parameter of the pursuer. The pursuer is allowed to use the control that the fugitive has used so far to build his control. There are enough conditions for the game to end even if it starts from any starting point. An algorithm for constructing the control function of the pursuer is defined. It should also be noted that the …


Developing A Monte Carlo Simulation For Time- Series Analysis Of Actinium-225 Decay, Victoria Wood Oct 2021

Developing A Monte Carlo Simulation For Time- Series Analysis Of Actinium-225 Decay, Victoria Wood

The Journal of Advanced Undergraduate Physics Laboratory Investigations, JAUPLI-B

This report describes the development of a script programmed in the Python language designed to simulate radioactive decay using Monte Carlo methods. This is to conduct analysis on the equilibrium behavior of a specific radioactive decay chain, replacing the traditional method of deriving a mathematical representation via differential equations. The resulting script produces a stacked histogram illustrating the decay of Actinium-225 over time and more closely models the potential for irregularities in the natural phenomenon. The script has potential applications in nuclear imaging and medical physics.


Modeling The Motion Of A Volleyball With Spin, Julian Ricardo Oct 2021

Modeling The Motion Of A Volleyball With Spin, Julian Ricardo

The Journal of Advanced Undergraduate Physics Laboratory Investigations, JAUPLI-B

Though a qualitative understanding of how spin affects a ball’s trajectory can be easily developed, a quantitative one is relatively difficult to hone. Additionally, although projectile motion is an extensively covered topic in introductory physics courses, friction and drag—let alone spin—receive little to no attention. Here we use a volleyball and video modeling software to compare the behavior of a non-spinning ball with one that has topspin in order to assess the accuracy of our various models incorporating drag and the Magnus effect.


Electrical And Magnetic Properties Of High Temperature Superconductors Using Varying Forms Of Data Acquisition, Aryn M. Hays, Lindsay Bechtel, Colton Turbeville, Anthony Johnsen, Chris A. Tanner Oct 2021

Electrical And Magnetic Properties Of High Temperature Superconductors Using Varying Forms Of Data Acquisition, Aryn M. Hays, Lindsay Bechtel, Colton Turbeville, Anthony Johnsen, Chris A. Tanner

The Journal of Advanced Undergraduate Physics Laboratory Investigations, JAUPLI-B

High temperature superconductors (HTS) are materials that display superconducting properties at temperatures above that of liquid nitrogen. Possible applications and ease of use in a typical physics laboratory make them interesting systems to study. In this experiment we measured the critical temperatures of two samples made of different HTS materials. We also devised a method that makes taking data automated.


Shape And Size Matter For Projectile Drag, Daniel Gordon Ang Oct 2021

Shape And Size Matter For Projectile Drag, Daniel Gordon Ang

The Journal of Advanced Undergraduate Physics Laboratory Investigations, JAUPLI-B

Newtonian mechanics is a fundamental building block of physics education, allowing us to characterize the motion of various objects in every day life. Here, we set out to investigate the effect of air resistance on projectile motion. We use high-speed cameras to record the flight of three different projectiles and compare this motion to a trajectory generated based on our theoretical model. We find that we are able to fit our model to the actual trajectory reasonably well, and find evidence that drag depends on the size and shape of the projectile.


Modeling A Swinging Atwood Machine, Parker W. Moody Oct 2021

Modeling A Swinging Atwood Machine, Parker W. Moody

The Journal of Advanced Undergraduate Physics Laboratory Investigations, JAUPLI-B

The motion of a Swinging Atwood Machine is a difficult to solve for using Newtonian Mechanics. Lagrangian Mechanics, on the other hand, is extremely useful tool for a system that can seem overwhelmingly difficult to solve in Newtonian Mechanics. In this Lab we find the Lagrangian for this Swinging Atwood system, solve for the equation of motion, and compare our model to that of the observed motion of the system. Our model provides a good approximation of the motion, with small discrepancies due to the unknown mass of our pulley and dissipative forces.


Atomic Force Microscopy, Tyler Lane Oct 2021

Atomic Force Microscopy, Tyler Lane

The Journal of Advanced Undergraduate Physics Laboratory Investigations, JAUPLI-B

The goal of this experiment is to use the Atomic Force Microscope (AFM) to get images of selected items and determine some distances of the characteristics of each sample. The ultimate goal is to measure the length of a nanotube, but unfortunately there were none left on the slide that was supposed to contain them. From the results of the lab and the lab manual of “companies” with possible lengths for each sample, Lindaas-Lahti Industries seems to have the best fit overall.


Decay Time Of A Damped Pendulum, Scott D. Froehle Oct 2021

Decay Time Of A Damped Pendulum, Scott D. Froehle

The Journal of Advanced Undergraduate Physics Laboratory Investigations, JAUPLI-B

A number of labs have been conducted to find the equation for a damped pendulum. A damped pendulum's behavior will be analyzed and fit to this equation. This lab focused on tau, the decay constant. It was hypothesized that the decay constant would be greater with increasing initial angles, ultimately because of the pendulum's greater velocity. A pendulum was hung on a rotary motion sensor to detect its activity when released from different angles from the vertical. Its behavior was observed and fit to the equation for the behavior of a damped pendulum. It was found that decay time and …


Photoluminescence Spectra Of Silicon Doped With Cadmium, N A. Sultanov, E T. Rakhimov, Z Mirzajonov, F T. Yusupov Aug 2021

Photoluminescence Spectra Of Silicon Doped With Cadmium, N A. Sultanov, E T. Rakhimov, Z Mirzajonov, F T. Yusupov

Scientific-technical journal

Cadmium and zinc, as transition metals, are deep-level impurities (DL) and have a significant effect on the electrical, photoelectric, recombination, and other properties of semiconductor crystals.This paper presents the results of experimental studies of the optical and electrical properties of silicon crystals containing impurity atoms of cadmium and zinc using DLTS and low-temperature photoluminescence (PL).


Infinite Peirce Distribution In The Algebra Of Compact Operators And Description Of Its Local Au-Tomorphisms, Farhodjon N. Arzikulov, Rejabboy Qo’Shaqov Jul 2021

Infinite Peirce Distribution In The Algebra Of Compact Operators And Description Of Its Local Au-Tomorphisms, Farhodjon N. Arzikulov, Rejabboy Qo’Shaqov

Scientific Bulletin. Physical and Mathematical Research

In the present paper the infinite Peirce decomposition of the algebra 𝐾(𝐻) of com-pact operators on an infinite dimensional separable Gilbert space 𝐻 is constructed, using the norm of the algebra 𝐾(𝐻) and a maximal family of mutually or-thogonal minimal projections, i.e., self-adjoint,idempotent elements. The infinite Peirce decompo-sition on the norm of a 𝐶∗-algebra is also con-structed in 2012 by the first author. But, it turns, the condition, applied then, is not sufficient for the infi-nite Peirce decomposition on the norm constructed in 2012 to be an algebra. Therefore, in the present paper, the infinite Peirce decomposition on the norm …


Effect Of Excess Tellurium And Lead On Defor-Mation - Characteristics Of Polycrystalline Pbte Films, Yu.Yu. Vaitkus, Otajonov Salimjon Jun 2021

Effect Of Excess Tellurium And Lead On Defor-Mation - Characteristics Of Polycrystalline Pbte Films, Yu.Yu. Vaitkus, Otajonov Salimjon

Scientific Bulletin. Physical and Mathematical Research

In this work, we studied the ef-fect of excess tellurium and lead on the defor-mation characteristics of polycrystalline PbTe films obtained on different substrates. It was found that the resistance of the films first increases and reach-es a maximum, and with a further increase in the level of deformation, it decreases and the sign of the tensile resistance begins to change, which are associated with the presence of internal stresses in the films. It was also shown that with an increase in the amount of lead in the composition of the PbTe film, the electrical conductivity increases in com-parison with …