Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Performance

Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 109

Full-Text Articles in Physical Sciences and Mathematics

Well I'Ll Be Damned - Insights Into Predictive Value Of Pedigree Information In Horse Racing, Timothy Baker Mr, Ming-Chien Sung, Johnnie Johnson Professor, Tiejun Ma Jun 2016

Well I'Ll Be Damned - Insights Into Predictive Value Of Pedigree Information In Horse Racing, Timothy Baker Mr, Ming-Chien Sung, Johnnie Johnson Professor, Tiejun Ma

International Conference on Gambling & Risk Taking

Fundamental form characteristics like how fast a horse ran at its last start, are widely used to help predict the outcome of horse racing events. The exception being in races where horses haven’t previously competed, such as Maiden races, where there is little or no publicly available past performance information. In these types of events bettors need only consider a simplified suite of factors however this is offset by a higher level of uncertainty. This paper examines the inherent information content embedded within a horse’s ancestry and the extent to which this information is discounted in the United Kingdom bookmaker …


Expeditious And Eco-Friendly Hydrothermal Polymerization Of Pedot Nanoparticles For Binderfree High Performance Supercapacitor Electrodes, Murugesan Rajesh, C Justin Raj, Byung Chul Kim, Ramu Manikandan, Sung Jin Kim, Sang-Yeup Prof Sang-Yeup Park, Kwangsoo Lee, Kook Hyun Yu Jan 2016

Expeditious And Eco-Friendly Hydrothermal Polymerization Of Pedot Nanoparticles For Binderfree High Performance Supercapacitor Electrodes, Murugesan Rajesh, C Justin Raj, Byung Chul Kim, Ramu Manikandan, Sung Jin Kim, Sang-Yeup Prof Sang-Yeup Park, Kwangsoo Lee, Kook Hyun Yu

Australian Institute for Innovative Materials - Papers

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a promising conjugated polymer that has attracted attention because of its outstanding electronic properties, useful for a wide range of applications in energy storage devices. However, synthesis of high-quality PEDOT occurs via vapour phase polymerization and chemical vapour deposition techniques using extrinsic hard templates or complicated experimental setups. This study introduces a simple hydrothermal polymerization technique using ferric chloride (FeCl3) as an oxidizing agent to overcome the above drawback, which results in good conductive, crystalline PEDOT nanodendrites and nanospheres. The effects of varying the molar ratio of FeCl3 oxidant were investigated in terms of the structural, morphological …


A Location Aware History-Based Approach For Network Selection In Heterogeneous Wireless Networks, Amir Hossein Jafari, Hadi Shahriar Shahhoseini Jan 2016

A Location Aware History-Based Approach For Network Selection In Heterogeneous Wireless Networks, Amir Hossein Jafari, Hadi Shahriar Shahhoseini

Turkish Journal of Electrical Engineering and Computer Sciences

Efficient decision making in vertical handoff and network selection algorithms improves users' quality of service and helps users meet service requirements, anywhere and at any time. Hence, in this paper, a user-centric network selection algorithm is proposed, utilizing the estimated reputation of the available candidate networks based on user location and combined experienced users' utility. User utility is defined based on 1) quality of service, 2) monetary cost, and 3) energy consumption metrics. In the proposed history aware-based user location algorithm, the past experience of users for available networks is considered to estimate the future utility that a user can …


Light Activated Electrochemistry: Light Intensity And Ph Dependence On Electrochemical Performance Of Anthraquinone Derivatized Silicon, Ying Yang, Simone Ciampi, Moinul H. Choudhury, J Justin Gooding Jan 2016

Light Activated Electrochemistry: Light Intensity And Ph Dependence On Electrochemical Performance Of Anthraquinone Derivatized Silicon, Ying Yang, Simone Ciampi, Moinul H. Choudhury, J Justin Gooding

Australian Institute for Innovative Materials - Papers

We seek to understand how the thermodynamics and kinetics of anthraquinone-containing self-assembled monolayer on silicon electrodes are affected by two key experimental variables: the intensity of the light assisting the anthraquinone/anthrahydroquinone redox process and the local solution environment. The substrates are chemically passivated poorly doped p-type silicon electrodes. The study presents a strategy for the selective modulation of either the anodic or the cathodic process occurring at the interface. Cyclic voltammetry studies showed that unlike for a proton-coupled electron transfer process performed at metallic electrodes, for the redox reaction of the anthraquinone unit on a silicon electrode it becomes possible …


Characteristics And Cadmium Extraction Performance Of Pvc/Aliquat 336 Electrospun Fibres In Comparison With Polymer Inclusion Membranes, Nurul Syazana Binti Abdul Halim, Philip G. Whitten, Long D. Nghiem Jan 2016

Characteristics And Cadmium Extraction Performance Of Pvc/Aliquat 336 Electrospun Fibres In Comparison With Polymer Inclusion Membranes, Nurul Syazana Binti Abdul Halim, Philip G. Whitten, Long D. Nghiem

Australian Institute for Innovative Materials - Papers

Electrospun fibres and polymer inclusion membranes (PIMs) were prepared from polyvinyl chloride (PVC) and Aliquat 336. Morphological and thermomechanical properties of the electrospun mats differed notably from those of PIMs. The plasticizing effect of Aliquat 336 on electrospun PVC/Aliquat 336 fibres was confirmed by the shifting of the glass transition temperature (Tg). By contrast, Aliquat 336 did not act as a plasticizer in PIMs as Tg was independent of Aliquat 336 concentration. Cadmium extraction to electrospun fibres could occur at a lower Aliquat 336 content (i.e. 6 wt.%) compared with PIMs. At 40 wt.% Aliquat 336 content, both PIMs and …


Significant Enhancement Of The Cycling Performance And Rate Capability Of The P/C Composite Via Chemical Bonding (P-C), Weijie Li, Shulei Chou, Jiazhao Wang, Hua-Kun Liu, S X. Dou Jan 2016

Significant Enhancement Of The Cycling Performance And Rate Capability Of The P/C Composite Via Chemical Bonding (P-C), Weijie Li, Shulei Chou, Jiazhao Wang, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Among anode materials for sodium ion batteries, red phosphorus is a very promising one due to its abundant reserves, low-cost and high theoretical capacity of 2600 mA h g-1. However, its huge volume expansion on sodiation (∼490%) and poor conductivity leads to dramatic capacity decay, restraining its practical application. To improve the electrochemical performance, here, we prepared a red phosphorus and graphene nanoplate composite using cheap red P and natural graphite as the starting materials via a simple and scalable ball-milling method. The phosphorus-carbon bond formed during the milling process improves the electrical connectivity between P particles and graphene nanoplates, …


A High-Performance Rechargeable Mg2+/Li+ Hybrid Battery Using One-Dimensional Mesoporous Tio2(B) Nanoflakes As The Cathode, Shuojian Su, Yanna Nuli, Zhenguo Huang, Qi Miao, Jun Yang, Jiulin Wang Jan 2016

A High-Performance Rechargeable Mg2+/Li+ Hybrid Battery Using One-Dimensional Mesoporous Tio2(B) Nanoflakes As The Cathode, Shuojian Su, Yanna Nuli, Zhenguo Huang, Qi Miao, Jun Yang, Jiulin Wang

Australian Institute for Innovative Materials - Papers

Mg2+/Li+ hybrid batteries have recently been constructed combining a Mg anode, a Li+-intercalation electrode, and an electrolyte containing both Mg2+ and Li+. These batteries have been reported to outperform all the previously reported magnesium batteries in terms of specific capacity, cycling stability, and rate capability. Herein, we report the outstanding electrochemical performance of Mg2+/Li+ hybrid batteries consisting of a one-dimensional mesoporous TiO2(B) cathode, a Mg anode, and an electrolyte consisting of 0.5 mol L-1 Mg(BH4)2 + 1.5 mol L-1 LiBH4 in tetraglyme. A highly synergetic interaction between Li+ and Mg2+ ions toward the pseudo-capacitive reaction is proposed. The hybrid batteries …


Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang Jan 2016

Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang

Australian Institute for Innovative Materials - Papers

Nitrogen-doped carbon coated Co 3 O 4 nanoparticles (Co 3 O 4 @NC) with high Na-ion storage capacity and unprecedented long-life cycling stability are reported in this paper. The Co 3 O 4 @NC was derived from a metal – organic framework ZIF-67, where the Co ions and organic linkers were, respectively, converted to Co 3 O 4 nanoparticle cores and nitrogen-doped carbon shells through a controlled two-step annealing process. The Co 3 O 4 @NC shows a porous nature with a surface area of 101 m 2 g 1 . When applied as an anode for sodium ion batteries …


Lead-Free Snte-Based Thermoelectrics: Enhancement Of Thermoelectric Performance By Doping With Gd/Ag, Lijuan Zhang, Jian Li Wang, Zhenxiang Cheng, Qiao Sun, Zhen Li, S X. Dou Jan 2016

Lead-Free Snte-Based Thermoelectrics: Enhancement Of Thermoelectric Performance By Doping With Gd/Ag, Lijuan Zhang, Jian Li Wang, Zhenxiang Cheng, Qiao Sun, Zhen Li, S X. Dou

Australian Institute for Innovative Materials - Papers

SnTe, with the same rock-salt structure as PbTe, is a potentially attractive thermoelectric material. Pristine SnTe has poor thermoelectric performance because of its very high hole concentration resulting from intrinsic Sn vacancies, which leads to a high thermal conductivity and a low Seebeck coefficient. In this work, the thermoelectric properties of SnTe were modified by doping with different contents of gadolinium and silver. It is found that SnTe doped with optimal gadolinium (i.e. Gd0.06Sn0.94Te) exhibited extraordinarily low lattice thermal conductivity that is close to the theoretical minimum. The drastic reduction of lattice thermal conductivity is attributed to the formation of …


Generalized Techniques For Using System Execution Traces To Support Software Performance Analysis, Thelge Manjula Peiris Dec 2015

Generalized Techniques For Using System Execution Traces To Support Software Performance Analysis, Thelge Manjula Peiris

Open Access Dissertations

This dissertation proposes generalized techniques to support software performance analysis using system execution traces in the absence of software development artifacts such as source code. The proposed techniques do not require modifications to the source code, or to the software binaries, for the purpose of software analysis (non-intrusive). The proposed techniques are also not tightly coupled to the architecture specific details of the system being analyzed. This dissertation extends the current techniques of using system execution traces to evaluate software performance properties, such as response times, service times. The dissertation also proposes a novel technique to auto-construct a dataflow model …


Joint Map Registration And High Resolution Image Estimation Using A Sequence Of Undersampled Images, Russell C. Hardie, Kenneth J. Barnard, Ernest E. Armstrong Mar 2015

Joint Map Registration And High Resolution Image Estimation Using A Sequence Of Undersampled Images, Russell C. Hardie, Kenneth J. Barnard, Ernest E. Armstrong

Russell C. Hardie

n many imaging systems, the detector array is not sufficiently dense to adequately sample the scene with the desired field of view. This is particularly true for many infrared focal plane arrays. Thus, the resulting images may be severely aliased. This paper examines a technique for estimating a high-resolution image, with reduced aliasing, from a sequence of undersampled frames. Several approaches to this problem have been investigated previously. However, in this paper a maximum a posteriori (MAP) framework for jointly estimating image registration parameters and the high-resolution image is presented. Several previous approaches have relied on knowing the registration parameters …


Effect Of Tensile Load On The Actuation Performance Of Ph-Sensitive Hydrogels, Sina Naficy, Geoffrey M. Spinks Jan 2015

Effect Of Tensile Load On The Actuation Performance Of Ph-Sensitive Hydrogels, Sina Naficy, Geoffrey M. Spinks

Australian Institute for Innovative Materials - Papers

pH-responsive hydrogels are capable of converting chemical energy to mechanical work. To optimize their use as actuators, their response when operating against an external load must be fully characterized. Here, the actuation strain of a model pH-sensitive hydrogel as a function of different constant loads is studied. The experimental actuation strain, produced by switching the pH from 2 to 12, decreases significantly and monotonically with increasing initial tensile load. Two models are developed to predict the actuation strain as a function of applied stress. Simple mechanical models based on the change in hydrogel modulus and cross sectional area due to …


Effective Enhancement Of The Electrochemical Performance Of Layered Cathode Li1.5mn0.75ni0.25o2.5 Via A Novel Facile Molten Salt Method, Zhuo Zheng, Wei-Bo Hua, S Liao, Yan Jun Zhong, En-Hui Wang, Bin-Bin Xu, Hua-Kun Liu, Ben-He Zhong Jan 2015

Effective Enhancement Of The Electrochemical Performance Of Layered Cathode Li1.5mn0.75ni0.25o2.5 Via A Novel Facile Molten Salt Method, Zhuo Zheng, Wei-Bo Hua, S Liao, Yan Jun Zhong, En-Hui Wang, Bin-Bin Xu, Hua-Kun Liu, Ben-He Zhong

Australian Institute for Innovative Materials - Papers

A series of nanocrystalline lithium-rich cathode materials Li1.5Mn0.75Ni0.25O2.5 have been prepared by a novel synthetic process, which combines the co-precipitation method and a modified molten salt method. By using a moderate excess of 0.5LiNO3-0.5LiOH eutectic salts as molten media and reactants, the usage of deionized water or alcohol in the subsequent wash process is successfully reduced, compared with the traditional molten salt method. The materials with different excess Li salt content, Li/M (M = Ni + Mn) = 1.55, 1.65, 1.75, 1.85, 1.95, 2.05, molar ratio, show distinct differences in their …


Synthesis Of Nitrogen-Doped Graphene Via Thermal Treatment Of Graphene Oxide Within Methylimidazole And Its Capacitance Performance As Electric Double Layer Capacitor, Md. Monirul Islam, Shaikh Nayeem Faisal, Anup Kumar Roy, Sonia Ansari, Dean Cardillo, Konstantin K. Konstantinov, Enamul Haque Jan 2015

Synthesis Of Nitrogen-Doped Graphene Via Thermal Treatment Of Graphene Oxide Within Methylimidazole And Its Capacitance Performance As Electric Double Layer Capacitor, Md. Monirul Islam, Shaikh Nayeem Faisal, Anup Kumar Roy, Sonia Ansari, Dean Cardillo, Konstantin K. Konstantinov, Enamul Haque

Australian Institute for Innovative Materials - Papers

Nitrogen-doped graphene was successfully synthesised from graphene oxide (GO) and 2-methylimidazole composite via thermal treatment under argon flow at 700oC within 1h. This synthesised N-doped graphene exhibits homogeneous nitrogen doping with concentration of ~5% in three different nitrogen configuration namelypyridinic N, pyrrolic N and graphitic N. The electric double layer capacitor (EDLC) made up with this N-doped graphene showed excellent specific capacitance 274 F/g at current density of 1A/g, which was ~7 times higher than GO. This EDLC capacitor showed excellent cyclic stability up to 5000 cycles with capacity retention of ~91%.


3d Hierarchical Porous Graphene Aerogel With Tunable Meso-Pores On Graphene Nanosheets For High-Performance Energy Storage, Long Ren, K N. Hui, K S. Hui, Yundan Liu, Xiang Qi, Jianxin Zhong, Yi Du, Jianping Yang Jan 2015

3d Hierarchical Porous Graphene Aerogel With Tunable Meso-Pores On Graphene Nanosheets For High-Performance Energy Storage, Long Ren, K N. Hui, K S. Hui, Yundan Liu, Xiang Qi, Jianxin Zhong, Yi Du, Jianping Yang

Australian Institute for Innovative Materials - Papers

New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable mesopores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a …


Simulation Study Of Hemt Structures With Hfo2 Cap Layer For Mitigating Inverse Piezoelectric Effect Related Device Failures, Deepthi Nagulapally, Ravi P. Joshi, Aswini Pradhan Jan 2015

Simulation Study Of Hemt Structures With Hfo2 Cap Layer For Mitigating Inverse Piezoelectric Effect Related Device Failures, Deepthi Nagulapally, Ravi P. Joshi, Aswini Pradhan

Electrical & Computer Engineering Faculty Publications

The Inverse Piezoelectric Effect (IPE) is thought to contribute to possible device failure of GaN High Electron Mobility Transistors (HEMTs). Here we focus on a simulation study to probe the possible mitigation of the IPE by reducing the internal electric fields and related elastic energy through the use of high-k materials. Inclusion of a HfO2 "cap layer" above the AlGaN barrier particularly with a partial mesa structure is shown to have potential advantages. Simulations reveal even greater reductions in the internal electric fields by using "field plates" in concert with high-k oxides


Research Progress On Design Strategies, Synthesis And Performance Of Limn2o4-Based Cathodes, Fangxin Mao, Wei Dong Guo, Jianmin Ma Jan 2015

Research Progress On Design Strategies, Synthesis And Performance Of Limn2o4-Based Cathodes, Fangxin Mao, Wei Dong Guo, Jianmin Ma

Australian Institute for Innovative Materials - Papers

Spinel LiMn2O4 (LMO)-based composites, due to their combination of low toxicity, abundant natural resources, and excellent electrochemical performance, are regarded as promising candidate cathode materials for lithium ion batteries. Current energy storage demands are not being met with existing materials, however, because of their defects, such as fast capacity fading, low rate capability, and low specific capacity in practical applications. Manganese dissolution during electrochemical processes bears the major responsibility for capacity loss, apart from the electrolyte factor. Low electrical conductivity, low ionic diffusion efficiency, and large structural variation have adverse effects on the electrochemical performance of materials. With respect to …


Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei Jan 2015

Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei

Australian Institute for Innovative Materials - Papers

Silicon batteries have attracted much attention in recent years due to their high theoretical capacity, although a rapid capacity fade is normally observed, attributed mainly to volume expansion during lithiation. Here, we report for the first time successful synthesis of Si/void/SiO2/void/C nanostructures. The synthesis strategy only involves selective etching of SiO2 in Si/SiO2/C structures with hydrofluoric acid solution. Compared with reported results, such novel structures include a hard SiO2-coated layer, a conductive carbon-coated layer, and two internal void spaces. In the structures, the carbon can enhance conductivity, the SiO2 layer has mechanically …


Effects Of Cu Substitution For Sn On The Electrochemical Performance Of La0.7mg0.3al0.3mn0.4sn0.5−Xcuxni3.8 (X = 0-0.5) Alloys For Ni-Mh Batteries, Julio Cesar Serafim Casini, Zaiping Guo, Hua-Kun Liu, Rubens Nunes Faria, Hidetoshi Takiishi Jan 2015

Effects Of Cu Substitution For Sn On The Electrochemical Performance Of La0.7mg0.3al0.3mn0.4sn0.5−Xcuxni3.8 (X = 0-0.5) Alloys For Ni-Mh Batteries, Julio Cesar Serafim Casini, Zaiping Guo, Hua-Kun Liu, Rubens Nunes Faria, Hidetoshi Takiishi

Australian Institute for Innovative Materials - Papers

The effects of substitution of Cu for Sn on the electrochemical discharge capacity performance of La0.7Mg0.3Al0.3Mn0.4Sn0.5−xCuxNi3.8 (x = 0.0, 0.1, 0.2, 0.3, and 0.5) negative electrode alloys were investigated. Results indicate that increasing Cu content enhanced electrochemical behavior by increasing the maximum discharge capacity from 239.8 mA·h/g (x = 0) to 305.2 mA·h/g (x = 0.5), the discharge capacity retention at the 100th cycle from 78.0% (x = 0) to 81.8% (x = 0.5), and the high rate dischargeability (HRD) from 25.7% (x = 0) to 80.6% (x = 0.5).


Increased Upconversion Performance For Thin Film Solar Cells: A Trimolecular Composition, Yuen Yap Cheng, Andrew Nattestad, Tim F. Schulze, Rowan W. Macqueen, Burkhard Fückel, Klaus Lips, Gordon G. Wallace, Tony Khoury, Maxwell J. Crossley, Timothy W. Schmidt Jan 2015

Increased Upconversion Performance For Thin Film Solar Cells: A Trimolecular Composition, Yuen Yap Cheng, Andrew Nattestad, Tim F. Schulze, Rowan W. Macqueen, Burkhard Fückel, Klaus Lips, Gordon G. Wallace, Tony Khoury, Maxwell J. Crossley, Timothy W. Schmidt

Australian Institute for Innovative Materials - Papers

Photochemical upconversion based on triplet-triplet annihilation (TTA-UC) is employed to enhance the short-circuit currents generated by two varieties of thin-film solar cells, a hydrogenated amorphous silicon (a-Si:H) solar cell and a dye-sensitized solar cell (DSC). TTA-UC is exploited to harvest transmitted sub-bandgap photons, combine their energies and re-radiate upconverted photons back towards the solar cells. In the present study we employ a dual-emitter TTA-UC system which allows for significantly improved UC quantum yields as compared to the previously used single-emitter TTA systems. In doing so we achieve record photo-current enhancement values for both the a-Si:H device and the DSC, surpassing …


High-Performance Flexible All-Solid-State Supercapacitor From Large Free-Standing Graphene-Pedot/Pss Films, Yuqing Liu, Bo Weng, Joselito M. Razal, Qun Xu, Chen Zhao, Yuyang Hou, Shayan Seyedin, Rouhollah Jalili, Gordon G. Wallace, Jun Chen Jan 2015

High-Performance Flexible All-Solid-State Supercapacitor From Large Free-Standing Graphene-Pedot/Pss Films, Yuqing Liu, Bo Weng, Joselito M. Razal, Qun Xu, Chen Zhao, Yuyang Hou, Shayan Seyedin, Rouhollah Jalili, Gordon G. Wallace, Jun Chen

Australian Institute for Innovative Materials - Papers

Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm-2 was achieved at a scan rate of 10 mV s-1 using the composite electrode with a high mass loading (8.49 mg …


A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo Jan 2015

A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel strategy to improve the electrochemical performance of a germanium anode is proposed via encapsulating germanium nanoparticles in carbon nanoboxes by carbon coating the precursor, germanium dioxide cubes, and then subjecting them to a reduction treatment. The complete and robust carbon boxes are shown to not only provide extra void space for the expansion of germanium nanoparticles after lithium insertion but also offer a large reactive area and reduced distance for the lithium diffusion. Furthermore, the thus-obtained composite, composed of densely stacked carbon nanoboxes encapsulating germanium nanoparticles (germanium at carbon cubes (Ge at CC)), exhibits a high tap density …


Role Of Anions On Structure And Pseudocapacitive Performance Of Metal Double Hydroxides Decorated With Nitrogen-Doped Graphene, Nasir Mahmood, Muhammad Nawaz Tahir, Asif Mahmood, Wenlong Yang, Xingxing Gu, Chuanbao Cao, Yawen Zhang, Yanglong Hou Jan 2015

Role Of Anions On Structure And Pseudocapacitive Performance Of Metal Double Hydroxides Decorated With Nitrogen-Doped Graphene, Nasir Mahmood, Muhammad Nawaz Tahir, Asif Mahmood, Wenlong Yang, Xingxing Gu, Chuanbao Cao, Yawen Zhang, Yanglong Hou

Australian Institute for Innovative Materials - Papers

Electrochemical capacitors (EC) bear faster charge-discharge; however, their real applications are still on a long away due to lower capacitance and energy densities which mainly arise from simple surface charge accumulation or/and reaction. Here, a novel synthesis strategy was designed to obtain the purposeful hybrids of nickel cobalt double hydroxide (NiCoDH) with genetic morphology to improve their electrochemical performance as electrode of EC. Nanostructures of metal hydroxides were grown on t he nitrogen-doped graphene (NG) sheets by utilizing defects as nucleation sites and their composition was optimized both by tuning the ratio of Ni:Co as well as the counter halogen …


Superior Intrinsic Thermoelectric Performance With Zt Of 1.8 In Single-Crystal And Melt-Quenched Highly Dense Cu2-Xse Bulks, Lanling Zhao, Xiaolin Wang, Ji-Yang Wang, Zhenxiang Cheng, S X. Dou, Jun Wang, L Liu Jan 2015

Superior Intrinsic Thermoelectric Performance With Zt Of 1.8 In Single-Crystal And Melt-Quenched Highly Dense Cu2-Xse Bulks, Lanling Zhao, Xiaolin Wang, Ji-Yang Wang, Zhenxiang Cheng, S X. Dou, Jun Wang, L Liu

Australian Institute for Innovative Materials - Papers

Practical applications of the high temperature thermoelectric materials developed so far are partially obstructed by the costly and complicated fabrication process. In this work, we put forward two additional important properties for thermoelectric materials, high crystal symmetry and congruent melting. We propose that the recently discovered thermoelectric material Cu2-xSe, with figure of merit, zT, over 1.5 at T of ~ 1000 K, should meet these requirements, based on our analysis of its crystal structure and the Cu-Se binary phase diagram. We found that its excellent thermoelectric performance is intrinsic, and less dependent on grain size, while highly dense samples can …


Performance Modulation Of Α-Mno2 Nanowires By Crystal Facet Engineering, W Li, Xiangyuan Cui, R Zeng, Guodong Du, Ziqi Sun, Rongkun Zheng, Simon Peter Ringer, S X. Dou Jan 2015

Performance Modulation Of Α-Mno2 Nanowires By Crystal Facet Engineering, W Li, Xiangyuan Cui, R Zeng, Guodong Du, Ziqi Sun, Rongkun Zheng, Simon Peter Ringer, S X. Dou

Australian Institute for Innovative Materials - Papers

Modulation of material physical and chemical properties through selective surface engineering is currently one of the most active research fields, aimed at optimizing functional performance for applications. The activity of exposed crystal planes determines the catalytic, sensory, photocatalytic, and electrochemical behavior of a material. In the research on nanomagnets, it opens up new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Herein, we demonstrate controllable magnetic modulation of α-MnO2 nanowires, which displayed surface ferromagnetism or antiferromagnetism, depending on the exposed plane. First-principles density functional theory calculations confirm that both Mn- and O-terminated α-MnO2 (1 …


Facile Method To Synthesize Na-Enriched Na1+Xfefe(Cn)6 Frameworks As Cathode With Superior Electrochemical Performance For Sodium-Ion Batteries, Weijie Li, Shulei Chou, Jiazhao Wang, Yong-Mook Kang, Jianli Wang, Yong Liu, Qinfen Gu, Hua-Kun Liu, S X. Dou Jan 2015

Facile Method To Synthesize Na-Enriched Na1+Xfefe(Cn)6 Frameworks As Cathode With Superior Electrochemical Performance For Sodium-Ion Batteries, Weijie Li, Shulei Chou, Jiazhao Wang, Yong-Mook Kang, Jianli Wang, Yong Liu, Qinfen Gu, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Different Na-enriched Na1+xFeFe(CN)6 samples can be synthesized by a facile one-step method, utilizing Na4Fe(CN)6 as the precursor in a different concentration of NaCl solution. As-prepared samples were characterized by a combination of synchrotron X-ray powder diffraction (S-XRD), Mössbauer spectroscopy, Raman spectroscopy, magnetic measurements, thermogravimetric analysis, X-ray photoelectron spectroscopy, and inductively coupled plasma analysis. The electrochemical results show that the Na1.56Fe[Fe(CN)6]·3.1H2O (PB-5) sample shows a high specific capacity of more than 100 mAh g-1 and excellent capacity retention of 97% over 400 cycles. The details structural evolution during …


High Performance Pure Sulfur Honeycomb-Like Architectures Synthesized By A Cooperative Self-Assembly Strategy For Lithium Sulfur Batteries, Xin Liang, Mohammad Kaiser, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Prof Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang Oct 2014

High Performance Pure Sulfur Honeycomb-Like Architectures Synthesized By A Cooperative Self-Assembly Strategy For Lithium Sulfur Batteries, Xin Liang, Mohammad Kaiser, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Prof Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang

Shi Xue Dou

Honeycomb-like pure sulfur architectures were synthesized by a cooperative self-assembly strategy, in which a soft template is used to form the porous structure. Their electrochemical performance is significantly improved comparing with the commercial sulfur powder and the as-prepared sulfur without honeycomb morphology. There has been no report on using a soft template to prepare honeycomb-like sulfur particles.


Thermoelectric Performance Of N-Type (Pbte)0.75(Pbs)0.15(Pbse)0.1 Composites, Sima Aminorroaya Yamini, Heng Wang, Dianta Ginting, David R. G Mitchell, S X. Dou, G. Jeffrey Snyder Oct 2014

Thermoelectric Performance Of N-Type (Pbte)0.75(Pbs)0.15(Pbse)0.1 Composites, Sima Aminorroaya Yamini, Heng Wang, Dianta Ginting, David R. G Mitchell, S X. Dou, G. Jeffrey Snyder

Shi Xue Dou

Lead chalcogenides (PbQ, Q = Te, Se, S) have proved to possess high thermoelectric efficiency for both n-type and p-type compounds. Recent success in tuning of electronic band structure, including manipulating the band gap, multiple bands, or introducing resonant states, has led to a significant improvement in the thermoelectric performance of p-type lead chalcogenides compared to the n-type ones. Here, the n-type quaternary composites of (PbTe)0.75(PbS)0.15(PbSe)0.1 are studied to evaluate the effects of nanostructuring on lattice thermal conductivity, carrier mobility, and effective mass variation. The results are compared with the similar ternary systems of (PbTe)1-x(PbSe)x, (PbSe) 1-x(PbS)x, and (PbS)1-x(PbTe)x. The …


Thermoelectric Performance Of Tellurium-Reduced Quaternary P-Type Lead-Chalcogenide Composites, Sima Aminorroaya Yamini, Heng Wang, Zachary M. Gibbs, Yanzhong Pei, David R. G Mitchell, S X. Dou, G. Jeffrey Snyder Oct 2014

Thermoelectric Performance Of Tellurium-Reduced Quaternary P-Type Lead-Chalcogenide Composites, Sima Aminorroaya Yamini, Heng Wang, Zachary M. Gibbs, Yanzhong Pei, David R. G Mitchell, S X. Dou, G. Jeffrey Snyder

Shi Xue Dou

A long-standing technological challenge to the widespread application of thermoelectric generators is obtaining high-performance thermoelectric materials from abundant elements. Intensive study on PbTe alloys has resulted in a high figure of merit for the single-phase ternary PbTe-PbSe system through band structure engineering, and the low thermal conductivity achieved due to nanostructuring leads to high thermoelectric performance for ternary PbTe-PbS compounds. Recently, the single-phase p-type quaternary PbTe-PbSe-PbS alloys have been shown to provide thermoelectric performance superior to the binary and ternary lead chalcogenides. This occurs via tuning of the band structure and from an extraordinary low thermal conductivity resulting from high-contrast …


High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou Oct 2014

High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou

Shi Xue Dou

Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d-spacing, a contribution of the graphene matrix, and the …