Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

Theses/Dissertations

2017

Institution
Keyword
Publication

Articles 31 - 48 of 48

Full-Text Articles in Physical Sciences and Mathematics

Nonlinear Dynamics Of Vortices In Different Types Of Grain Boundaries, Ahmad K. Sheikhzada Apr 2017

Nonlinear Dynamics Of Vortices In Different Types Of Grain Boundaries, Ahmad K. Sheikhzada

Physics Theses & Dissertations

As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, …


Experimental Studies Of Electrical Resistivity Behavior Of Cu, Zn And Co Along Their Melting Boundaries: Implications For Heat Flux At Earth’S Inner Core Boundary, Innocent Chinweikpe Ezenwa Mar 2017

Experimental Studies Of Electrical Resistivity Behavior Of Cu, Zn And Co Along Their Melting Boundaries: Implications For Heat Flux At Earth’S Inner Core Boundary, Innocent Chinweikpe Ezenwa

Electronic Thesis and Dissertation Repository

Abstract

The electrical resistivity of high purity Cu, Zn and Co has been measured at pressures (P) up to 5GPa and at temperatures (T) in the liquid phase. The electrical resistivity of solid state Nb was also measured up to 5GPa and ~1900K. All measurements were made in a large volume cubic anvil press. Using two thermocouples placed at opposite ends of the sample wire, serving as temperature probes as well as resistance leads, a four-wire technique resistivity measurement was employed along with a polarity switch. Post-experiment compositional analyses were carried out on an electron microprobe.

The expected resistivity decrease …


Morphology Of Thin Sheets In The Lame Setup And Beyond, Zhanlong Qiu Mar 2017

Morphology Of Thin Sheets In The Lame Setup And Beyond, Zhanlong Qiu

Doctoral Dissertations

We present a general analytical approach to study the wrinkling phenomena in the Lame, sheet on drop, drop on sheet, and twisted ribbon setups. In the partially single-mode wrinkle pattern, we employ the boundary layer analysis to regularize the divergence in the energy and obtain the optimal wavenumber. In the multi-mode wrinkle pattern scenario, we consider the effects of the boundary condition, meniscus, and the geometry of the setup separately on the energies and obtain scaling results for the wavenumber of the multi-mode pattern due to each effect. Lastly, a wrinkle-to-fold transition is discussed in the Lame setup, with our …


Tunneling Assisted Forbidden Transitions In The Single Molecule Magnet Ni4, Yiming Chen Mar 2017

Tunneling Assisted Forbidden Transitions In The Single Molecule Magnet Ni4, Yiming Chen

Doctoral Dissertations

This dissertation presents work in exploring novel quantum phenomena in singlemolecule magnets (SMMs) and superconducting circuits. The degree of the freedom studied is the magnetic moment of a single molecule and the flux quantum trapped in a superconducting ring. These phenomena provide us with new insights into some basic questions of physics and may also find their application in quantum computing. The molecule we studied is Ni4 ([Ni4(hmp)(dmp)Cl]4) which can be treated as a spin-4 magnet. The large magnetic anisotropy of the molecule leads to bistability of the magnetic moment at low temperatures, with spin-up and spin-down states separated by …


The Effects Of Tilted Magnetic Fields On Quantum Transport In 2d Electron Systems, William A. Mayer Feb 2017

The Effects Of Tilted Magnetic Fields On Quantum Transport In 2d Electron Systems, William A. Mayer

Dissertations, Theses, and Capstone Projects

There exists a myriad of quantum transport phenomena in highly mobile 2D electrons placed in a perpendicular magnetic field. We study the effects of tilted magnetic field on these transport properties to understand how the energy spectrum evolves. We observe significant changes of the electron transport in quantum wells of varying widths with high electron densities at high filling factors. In narrow quantum wells the spin splitting of Landau levels due to Zeeman effect is found to be the dominant mechanism reducing Quantum Positive Magnetoresistance. In wider quantum wells with two populated subbands Magnetointersubband oscillations appear to exhibit effects from …


Nanostructured Lithium Iron Silicate/Carbon Composites As Cathode Material For Next Generation Of Lithium-Ion Batteries, Ajay Kumar Jan 2017

Nanostructured Lithium Iron Silicate/Carbon Composites As Cathode Material For Next Generation Of Lithium-Ion Batteries, Ajay Kumar

Wayne State University Dissertations

Lithium iron silicate (Li2FeSiO4) has the potential as cathode material for next generation lithium ion batteries because of its high specific theoretical capacity (330 mA h g-1), low cost, environmental benignity, and improved safety. However, itsintrinsically poor electronic conductivity and slow lithium ion diffusion in the solid phase limits its applications. To address these issues, we studied mesoporous Li2FeSiO4/C composites synthesized by sol-gel (SG) and solvothermal (ST) methods using tri-block copolymer (P123) as carbon source and structure directing agent. The Li2FeSiO4/C (ST) composites show improved electrochemical performance compared to Li2FeSiO4/C (SG). At C/30 rate, Li2FeSiO4/C (ST) delivered the discharge capacity …


Nonlinear Dynamic Studies Of Pattern-Forming And Biomedical Systems, Doaa Taha Jan 2017

Nonlinear Dynamic Studies Of Pattern-Forming And Biomedical Systems, Doaa Taha

Wayne State University Dissertations

Nonlinear phenomena are ubiquitous in nature and in almost every discipline of science. Various nonlinear dynamic theories are being developed to investigate a wide range of complex nonlinear systems. In this work, we study two types of nonlinear phenomena. The first type involves understanding and controlling the properties and dynamics of two-dimensional (2D) material systems. We develop a binary phase field crystal (PFC) model which simultaneously addresses diffusive dynamics of large-scale systems and resolves material microstructures, and apply the model to the study of two material systems. (1) We use this PFC model to investigate the self assembly of 2D …


Deconfined Quantum Criticality In 2d Su(N) Magnets With Anisotropy, Jonathan D'Emidio Jan 2017

Deconfined Quantum Criticality In 2d Su(N) Magnets With Anisotropy, Jonathan D'Emidio

Theses and Dissertations--Physics and Astronomy

In this thesis I will outline various quantum phase transitions in 2D models of magnets that are amenable to simulation with quantum Monte Carlo techniques. The key player in this work is the theory of deconfined criticality, which generically allows for zero temperature quantum phase transitions between phases that break distinct global symmetries. I will describe models with different symmetries including SU(N), SO(N), and "easy-plane" SU(N) and I will demonstrate how the presence or absence of continuous transitions in these models fits together with the theory of deconfined criticality.


Stacking Atomically Thin Materials, Hamilton Johnson Jan 2017

Stacking Atomically Thin Materials, Hamilton Johnson

Honors Theses

Atomically thin materials have been an exciting topic of research since graphene was first isolated in 2004. Due to their unique properties, a large amount of research has gone into these materials, but better methods of combining them are still being sought. We present three methods which were attempted for fabricating stacks of atomically thin (or 2D) materials without heating them to the high temperatures required by previous techniques. The first two methods were deemed unsuitable for various reasons, but the third was used to successfully create a stack of hexagonal boron nitride (hBN) encapsulated molybdenum disulfide (MoS2). While the …


Power Distribution Of Terahertz Emission From Hexagonal Bscco Microstrip Antennas, Andrew E. Davis Jan 2017

Power Distribution Of Terahertz Emission From Hexagonal Bscco Microstrip Antennas, Andrew E. Davis

Honors Undergraduate Theses

We analyze the distribution of coherent terahertz radiation from a regular hexagonal microstrip antenna (MSA) made from the high-Tc superconductor Bi2Sr2CaCu2O8+x (BSCCO). We discuss the C6v symmetry of the solutions of the wave equation on a hexagonal domain and distinguish between the closed-form and non-closed-form solutions. The closed-form wavefunctions of the transverse magnetic (TM) electromagnetic cavity modes are presented and formulas for the radiated power arising from the uniform part of the AC Josephson current and from the resonant cavity modes are derived. The wavefunctions and angular distribution of radiation from …


Study Of The Photoluminescence Spectra Of Mg-Doped Gan, Puranjan Ghimire Jan 2017

Study Of The Photoluminescence Spectra Of Mg-Doped Gan, Puranjan Ghimire

Theses and Dissertations

We have studied luminescence properties of Mg-doped GaN grown by hydride vapor phase epitaxy. Steady state photoluminescence (PL) spectra have been analyzed. Exciton, ultraviolet luminescence (UVL) and blue luminescence (BL) bands are the dominant PL bands in the spectra. At low temperature, Exciton and UVL bands show almost no shift with excitation intensity, whereas the BL band blueshifts by almost 0.4 ���� with increasing excitation intensity by seven orders of magnitude. Such shifting nature of bands with excitation intensity is explained by assuming that the BL band is detected from the region of the sample where potential fluctuations are very …


Accelerating Quantum Monte Carlo Via Graphics Processing Units, Benjamin Evert Himberg Jan 2017

Accelerating Quantum Monte Carlo Via Graphics Processing Units, Benjamin Evert Himberg

Graduate College Dissertations and Theses

An exact quantum Monte Carlo algorithm for interacting particles in the spatial continuum is extended to exploit the massive parallelism offered by graphics processing units. Its efficacy is tested on the Calogero-Sutherland model describing a system of bosons interacting in one spatial dimension via an inverse square law. Due to the long range nature of the interactions, this model has proved difficult to simulate via conventional path integral Monte Carlo methods running on conventional processors. Using Graphics Processing Units, optimal speedup factors of up to 640 times are obtained for N = 126 particles. The known results for the ground …


Temperature Dependence Of Dynamical Spin Injection In A Superconducting Niobium Thin Film, Tyler S. Townsend Jan 2017

Temperature Dependence Of Dynamical Spin Injection In A Superconducting Niobium Thin Film, Tyler S. Townsend

Honors Undergraduate Theses

Spintronics is a research field that focuses on the manipulation of the quantum mechanical spin of charge carriers in solid state materials for future technological applications. Creating large spin currents with large relaxation times is sought after in the field of spintronics which may be aided by combining spintronics with superconductivity. This thesis provides a phenomological study of the effective change in ferromagnetic resonance linewidth, by dynamical spin injection into a permalloy-copper-niobium tri-layer in the superconducting state. The ferromagetic resonance linewidth was measured from 2-14 K. It was observed that there was a change in the behavior of the resonance …


Thermal Conductivities Of Organic Semiconductors, Yulong Yao Jan 2017

Thermal Conductivities Of Organic Semiconductors, Yulong Yao

Theses and Dissertations--Physics and Astronomy

Organic semiconductors have gained a lot of interest due to their ease of processing, low-cost and inherent mechanical flexibility. Although most of the research has been on their electronic and optical properties, knowledge of the thermal properties is important in the design of electronic devices as well. Our group has used ac-calorimetric techniques to measure both in-plane and transverse thermal conductivities of a variety of organic semiconductors including small-molecule crystals and polymer blends. For layered crystals composed of molecules with planar backbones and silylethynyl (or germylethynyl) sidegroups projecting between the layers, very high interplanar thermal conductivities have been observed, presumably …


Tuning The Effective Electron Correlation In Iridate Systems Featuring Strong Spin-Orbit Interaction, John H. Gruenewald Jan 2017

Tuning The Effective Electron Correlation In Iridate Systems Featuring Strong Spin-Orbit Interaction, John H. Gruenewald

Theses and Dissertations--Physics and Astronomy

The 5d transition metal oxides have drawn substantial interest for predictions of being suitable candidates for hosting exotic electronic and magnetic states, including unconventional superconductors, magnetic skyrmions, topological insulators, and Weyl semimetals. In addition to the electron-electron correlation notable in high-temperature 3d transition metal superconductors, the 5d oxides contain a large spin-orbit interaction term in their ground state, which is largely responsible for the intricate phase diagram of these materials. Iridates, or compounds containing 5d iridium bonded with oxygen, are of particular interest for their spin-orbit split Jeff = 1/2 state, which is partially filled without the presence …


Materials For Giant Spin Hall Effect Devices, Avyaya Jayanthinarasimham Jan 2017

Materials For Giant Spin Hall Effect Devices, Avyaya Jayanthinarasimham

Legacy Theses & Dissertations (2009 - 2024)

Studies presented in this thesis are an effort to control the growth of β W and explore


Mechanisms Of Euv Exposure : Photons, Electrons And Holes, Amrit Kausik Narasimhan Jan 2017

Mechanisms Of Euv Exposure : Photons, Electrons And Holes, Amrit Kausik Narasimhan

Legacy Theses & Dissertations (2009 - 2024)

The microelectronics industry’s movement toward smaller and smaller feature sizes has necessitated a shift to Extreme Ultra-Violet (EUV) lithography to be able to pattern sub 20-nm features, much like earlier shifts from i-line to 248 nm. However, this shift from 193-nm lithography to EUV (13.5 nm) poses significant obstacles. EUV is the first optical lithography to operate in an energy range (92 eV per photon vs. 6.4 eV per photon for 193 nm lithography) above the electron binding energies of common resist atomic species. This significant energy increase complicates resist design. For exposures of equal dose, resists receive 14 times …


Dirac Surface States Of Magnetic Topological Insulators, Seng Huat Lee Jan 2017

Dirac Surface States Of Magnetic Topological Insulators, Seng Huat Lee

Doctoral Dissertations

"Magnetic topological insulator (TI) has been theoretically proposed to be a platform for inducing magnetic monopole and exhibit fascinating quantum phenomena, whereas topological superconductor can host Majorana fermions, particles that are their own antiparticles, which can be manipulated for topological quantum computing. In this dissertation, we experimentally demonstrated that by intercalation of different transition metals in the van der Waals gaps of Bi2Se3 TI, magnetism and even superconductivity can be induced. In FexBi2Se3, antiferromagnetism is induced with a transition temperature at ~ 100 K. Coexistence of the Dirac surface state with …