Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 2468

Full-Text Articles in Physical Sciences and Mathematics

Understanding The Impact Of Microplastic Contamination On Soil Quality And Eco-Toxicological Risks In Horticulture: A Comprehensive Review, N. P. Gayathri, Geena Prasad, Vaishna Prabhakaran, Vishnu Priya Jun 2024

Understanding The Impact Of Microplastic Contamination On Soil Quality And Eco-Toxicological Risks In Horticulture: A Comprehensive Review, N. P. Gayathri, Geena Prasad, Vaishna Prabhakaran, Vishnu Priya

Research outputs 2022 to 2026

The horticulture sector, essential for global food production, confronts significant challenges with prevalent pollutants, mainly microplastics. The presence of microplastics in the food chain has induced physiological stress and a multifactorial food safety concern. The complexity of the problem, arising from intricate interactions among microplastics, organisms, and ecosystems, poses a substantial challenge to food safety, necessitating an immediate strategic perspective due to the associated risks to human health and eco-toxicology. Significant knowledge gaps persist regarding their impact on terrestrial ecosystems, especially in horticulture. This study addresses the urgent need to comprehend the implications of microplastics on soil health, eco-toxicological risks, …


Electrocatalytic Cyclopropanation Of Active Methylene Compounds, Liang-Hua Jie, Hai-Chao Xu Apr 2024

Electrocatalytic Cyclopropanation Of Active Methylene Compounds, Liang-Hua Jie, Hai-Chao Xu

Journal of Electrochemistry

The development of novel strategies to access cyclopropanes has become increasingly important due to the vital role of these three-membered ring structures in synthetic intermediates, natural products, and pharmaceuticals. Herein, we present an electrocatalytic method for the synthesis of cyclopropanes through intermolecular dehydrogenative annulation of active methylene compounds and arylalkenes. This electrochemical process requires no chemical oxidants, allowing for a speedy access to various functionalized cyclopropanes from inexpensive and readily available materials.


Electrochemical Syntheses Of Aryl-Substituted Benzothiophenes And Phenanthrenes Using Benzenediazonium Salts As The Aryl Radical Precursors, Li-Yuan Lan, Yang-Ye Jiang, Raymond Daniel Little, Cheng-Chu Zeng Apr 2024

Electrochemical Syntheses Of Aryl-Substituted Benzothiophenes And Phenanthrenes Using Benzenediazonium Salts As The Aryl Radical Precursors, Li-Yuan Lan, Yang-Ye Jiang, Raymond Daniel Little, Cheng-Chu Zeng

Journal of Electrochemistry

Aryl-substituted benzothiophene and phenanthrene are important structural units in medicinal chemistry and materials science. Although extensive effort has been devoted to prepare these compounds and a variety of approaches have been developed to construct the 2-substituted benzothiophene core structure, environmental-friendly and efficient synthetic means are still desired. Based on our previous electrochemical Minisci-type arylation reaction with aryl diazonium salt as the aryl precursor, as well as the work from König’s group, herein, we described the use of paired electrolysis to achieve 2-aryl benzothiophenes and 9-aryl phenanthrenes employing benzenediazonium salts as the aryl radical precursors. Initially, 2-methylthiobenzendiazonium salt 1a and 4-methylbenzene …


Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu Apr 2024

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu

Journal of Electrochemistry

Zero-emission of desulfurization wastewater is one of the main demands for coal-fired power plants. As typical high salinity wastewater, it is hard to purify the desulfurization wastewater from coal-fired power plants through traditional physicochemical treatment or biochemical treatment, e.g., COD and Cl. A high concentration of Cl ion in desulfurization wastewater restricts wastewater reuse and zero-emission. Electrochemical technology is an attractive method for high salinity wastewater zero-emission, which provides a versatile, efficient, cost-effective, easily automatable, and clean industrial process. For advanced treatment of effluent after triple box process treatment in power plants, this paper reports an electrochemical …


Cfd Study On Two-Phase Flow Patterns In A Pipe With 90º Elbow In Different Operating Conditions, Hagar Alm-Eldin Bastawissi, Mohammed Ahmed Khafagy, E. A. El Shenawy Prof. Dr., Ahmed M. Salem Dr Mar 2024

Cfd Study On Two-Phase Flow Patterns In A Pipe With 90º Elbow In Different Operating Conditions, Hagar Alm-Eldin Bastawissi, Mohammed Ahmed Khafagy, E. A. El Shenawy Prof. Dr., Ahmed M. Salem Dr

Journal of Engineering Research

Recently, CFD has offered a technological solution for modelling multi-phase flow in which we can make endless simulations with reduced expenses and effort in high accuracy results; we shall also mention that experimental studies have limitations for safety considerations when experimenting with flow in high temperature or pressure values or medium nature as in nuclear or chemical flows.In this paper, we used the ANSYS FLUENT CFD program to simulate the two-phase flow in a pipe to study the effect of attaching a 90-degree elbow fitting to the piping system, seeking to find out the change in the pattern and resulting …


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin Mar 2024

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


Investigation Of Gas Dynamics In Water And Oil-Based Muds Using Das, Dts, And Dss Measurements, Temitayo S. Adeyemi Mar 2024

Investigation Of Gas Dynamics In Water And Oil-Based Muds Using Das, Dts, And Dss Measurements, Temitayo S. Adeyemi

LSU Master's Theses

Reliable prediction of gas migration velocity, void fraction, and length of gas-affected region in water and oil-based muds is essential for effective planning, control, and optimization of drilling operations. However, there is a gap in our understanding of gas behavior and dynamics in water and oil-based muds. This is a consequence of the use of experimental systems that are not representative of field-scale conditions. This study seeks to bridge the gap via the well-scale deployment of distributed fiber-optic sensors for real-time monitoring of gas behavior and dynamics in water and oil-based mud. The aforementioned parameters were estimated in real-time using …


Highly Efficient Dopamine Sensing With A Carbon Nanotube-Encapsulated Metal Chalcogenide Nanostructure, Harish Singh, Jiandong Wu, Kurt A.L. Lagemann, Manashi Nath Mar 2024

Highly Efficient Dopamine Sensing With A Carbon Nanotube-Encapsulated Metal Chalcogenide Nanostructure, Harish Singh, Jiandong Wu, Kurt A.L. Lagemann, Manashi Nath

Chemical and Biochemical Engineering Faculty Research & Creative Works

Carbon nanotube-encapsulated nickel selenide composite nanostructures were used as nonenzymatic electrochemical sensors for dopamine detection. These composite nanostructures were synthesized through a simple, one-step, and environmentally friendly chemical vapor deposition method, wherein the CNTs were formed in situ from pyrolysis of a carbon-rich metallo-organic precursor. The composition and morphology of these hybrid NiSe2-filled carbon nanostructures were confirmed by powder X-ray diffraction, Raman, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy images. Electrochemical tests demonstrated that the as-synthesized hybrid nanostructures exhibited outstanding electrocatalytic performance toward dopamine oxidation, with a high sensitivity of 19.62 μA μM-1 cm-2, low detection limit, broad linear …


Adsorption Of Crystal Violet Dye From Synthetic Wastewater By Ball-Milled Royal Palm Leaf Sheath, Neloy Sen, Nawrin Rahman Shefa, Kismot Reza, Sk Md Ali Zaker Shawon, Md. Wasikur Rahman Mar 2024

Adsorption Of Crystal Violet Dye From Synthetic Wastewater By Ball-Milled Royal Palm Leaf Sheath, Neloy Sen, Nawrin Rahman Shefa, Kismot Reza, Sk Md Ali Zaker Shawon, Md. Wasikur Rahman

Physics and Astronomy Faculty Publications and Presentations

The current study shows that using a batch approach to remove crystal violet dye from synthetic wastewater is feasible when using royal palm leaf sheath powder as an adsorbent. In order to investigate the effects of many parameters, including starting concentration, pH effect, dye concentration, adsorbent dose, contact time, and temperature, experiments were carried out under various operating conditions. Maximum removal was obtained at pH 6 and at a concentration of 100 ppm, which are considered as ideal values. The influence of pH and dye concentration was shown to be substantial. Langmuir, Freundlich, and Temkin isotherm models were fitted to …


Utilization Of Caputo Fractional Derivative In Mhd Nanofluid Flow With Soret And Thermal Radiation Effects, Harshad Patel, Gopal Nanda Mar 2024

Utilization Of Caputo Fractional Derivative In Mhd Nanofluid Flow With Soret And Thermal Radiation Effects, Harshad Patel, Gopal Nanda

Applications and Applied Mathematics: An International Journal (AAM)

In existence of heat diffusion and thermal radiation, an analytical equation is found for unsteady MHD flow past an exponentially accelerating vertical plate in optically thick water based nanofluid. The governing equations are made dimensionless by similarity transformation. A definition of Caputo fractional derivative is applied to generalize governing system of partial differential equations. Laplace transform techniques are applied and obtained the analytical solutions of proposed problems. For a physical point of view, numerical results are obtained using MATLAB software and presented via graphs. From the results, it is concluded that magnetic fields tend to reduce velocity. It is also …


Identification Of Faults In Highways Using Approximation Methods And Algorithms, Khudayberdiyev Khakkulmirzayevich Mirzaakbar, Anvar Asatilloyevich Ravshanov Feb 2024

Identification Of Faults In Highways Using Approximation Methods And Algorithms, Khudayberdiyev Khakkulmirzayevich Mirzaakbar, Anvar Asatilloyevich Ravshanov

Chemical Technology, Control and Management

Many fast Fourier transforms are used to identify defective parts of uneven surfaces on roads and send information to relevant organizations on the road, using the " RAVON YO‘LLAR" application installed on a mobile device during car movement. We determine the uneven parts of the road. Smooth and well-maintained roads reduce the risk of vehicle collisions, skidding and other road-related incidents. Timely measures contribute to overall safety, comfort and economic efficiency.


Maximizing Charge Dynamics In Znin2s4/Cn Van Der Waals Heterojunction For Optimal Hydrogen Production From Photoreforming Of Glucose, Jinqiang Zhang, Xinyuan Xu, Lei Shi, Huayang Zhang, Shaobin Wang, Hongqi Sun Feb 2024

Maximizing Charge Dynamics In Znin2s4/Cn Van Der Waals Heterojunction For Optimal Hydrogen Production From Photoreforming Of Glucose, Jinqiang Zhang, Xinyuan Xu, Lei Shi, Huayang Zhang, Shaobin Wang, Hongqi Sun

Research outputs 2022 to 2026

Biomass photoreforming stands out as a promising avenue for green hydrogen, leveraging solar energy for the generation and transformation of clean and renewable energy resources. The pursuit of efficient photocatalysts is motivated by the unsatisfied hydrogen evolution performance arising from the complex and stubborn structure of biomass. Herein, we loaded 2-dimensional (2D) ZnIn2S4 onto 2D carbon nitride nanosheets, resulting in the formation of Van der Waals (VDW) heterojunctions (ZIS/CN). Band structure and morphology of CN were rationally tailored through precursor engineering to effectively magnify interfacial internal electric field and minimize diffusion pathway within the VDW heterostructure, realizing optimal charge dynamics …


Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang Jan 2024

Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang

Journal of Electrochemistry

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry Jan 2024

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma Jan 2024

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Molecular Understanding And Design Of Deep Eutectic Solvents And Proteins Using Computer Simulations And Machine Learning, Usman Lame Abbas Jan 2024

Molecular Understanding And Design Of Deep Eutectic Solvents And Proteins Using Computer Simulations And Machine Learning, Usman Lame Abbas

Theses and Dissertations--Chemical and Materials Engineering

Hydrophobic deep eutectic solvents (DESs) have emerged as excellent extractants. A major challenge is the lack of an efficient tool to discover DES candidates. Currently, the search relies heavily on the researchers’ intuition or a trial-and-error process, which leads to a low success rate or bypassing of promising candidates. DES performance depends on the heterogeneous hydrogen bond environment formed by multiple hydrogen bond donors and acceptors. Understanding this heterogeneous hydrogen bond environment can help develop principles for designing high performance DESs for extraction and other separation applications. This work investigates the structure and dynamics of hydrogen bonds in hydrophobic DESs …


Direct Blue 86 Textile Dye Removal From Aqueous Solution Using Rice Husk-Based Adsorbent, M. Zulbahari M. Zua, Muhammad Raza Ul Mustafa, Mohamed Hasnain Isa, Teh Sabariah Binti Abd Manan, Naimah Ibrahim, Rozeana Hj Md Juani, Wida Susanty Hj Suhaili, Asmaal Muizz Sallehhin Bin Hj Mohammad Sultan, Zuliana Binti Hj Nayan Jan 2024

Direct Blue 86 Textile Dye Removal From Aqueous Solution Using Rice Husk-Based Adsorbent, M. Zulbahari M. Zua, Muhammad Raza Ul Mustafa, Mohamed Hasnain Isa, Teh Sabariah Binti Abd Manan, Naimah Ibrahim, Rozeana Hj Md Juani, Wida Susanty Hj Suhaili, Asmaal Muizz Sallehhin Bin Hj Mohammad Sultan, Zuliana Binti Hj Nayan

ASEAN Journal on Science and Technology for Development

Adsorption by activated carbon is an effective method of dye removal. However, due to high production and regeneration costs of activated carbon, various studies on low-cost adsorbents have been conducted. Agricultural waste such as rice husk (RH) is seen to be a good adsorbent for dye removal. Moreover, rice husk is readily available. In this study, rice husk-based adsorbents were prepared by chemical and thermal treatments. Standard curve (colour vs absorbance) for Direct Blue 86 (DB 86) was prepared to determine the concentration of dye before and after adsorption. The adsorption potential of the adsorbent for textile dye DB 86 …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao Dec 2023

An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao

Journal of Electrochemistry

The solid-electrolyte interphase (SEI) plays a key role in anodes for rechargeable lithium-based battery technologies. However, a thorough understanding in the mechanisms of SEI formation and evolution remains a major challenge, hindering the rapid development and wide applications of Li-based batteries. Here, we devise a borrowing surface-enhanced Raman scattering (SERS) activity strategy by utilizing a size optimized Ag nanosubstrate to in-situ monitor the formation and evolution of SEI, as well as its structure and chemistry in an ethylene carbonate-based electrolyte. To ensure a reliable in-situ SERS investigation, we designed a strict air-tight Raman cell with a three-electrode configuration. Based on …


Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr Dec 2023

Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr

Journal of Electrochemistry

Solid oxide electrolysis cell (SOEC) is an efficient and clean energy conversion technology that can utilize electricity obtained from renewable resources, such as solar, wind, and geothermal energy to electrolyze water and produce hydrogen. The conversion of abundant intermittent energy to hydrogen energy would facilitate the efficient utilization of energy resources. SOEC is an all-ceramic electrochemical cell that operates in the intermediate to high temperature range of 500–750 ℃. Compared with traditional low temperature electrolysis technology (e.g., alkaline or proton exchange membrane cells operating at ~100 ℃), the high-temperature SOEC can increase the electrolysis efficiency from 80% to ~100%, providing …


Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj Dec 2023

Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj

Journal of Materials Exploration and Findings

The production of metal and alloy products requires the use of heat treatment, when during the heat treatment process, quenching is a crucial step. The quenching medium can be anything from water, a salt bath, oil, air and gas. In a vacuum furnace, pressurized gas, most frequently nitrogen (N2) gas, serves as one of the quenching mediums. One of the drawbacks of the quenching process is the distortion and dimensional change of the parts. This paper aims to investigate the influence of nitrogen gas quenching pressure on the distortion and dimensional change of aerospace actuator gear planet parts …


Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara Dec 2023

Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara

Journal of Materials Exploration and Findings

Hydrocarbon releases might result in serious consequences in various aspects. In addition to the contribution to environmental pollution, repetitive leakages need high repair costs. This study aim is to minimize potential repetitive leakage for other typical 3-phase piping systems. We conducted the risk assessment by adopting Risk Based Inspection (RBI) API 581 to identify risk level, calculating piping lifetime, recommended inspection plan and mitigations. The most relevant root causes can be obtained through quantitative Fault Tree Analysis (FTA). Observation and investigation was taken from eight 3-phase piping systems that experienced repetitive leakages. It has been found that the risk level …


Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava Dec 2023

Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava

Electronic Theses & Dissertations

High clean energy demand, dire need for sustainable development, and low carbon footprints are the few intuitive challenges, leading researchers to aim for research and development for high-performance energy devices. The development of materials used in energy devices is currently focused on enhancing the performance, electronic properties, and durability of devices. Tunning the attributes of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to meet the requirements of energy devices such as water electrolyzers and supercapacitors, although such a material’s configuration is rarely exposed for this purpose of study.

Herein, we grow …


Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman Dec 2023

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio Dec 2023

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio

All Dissertations

Designing new catalytic and sorption materials is necessary to limit global temperature rise below 1.5 ◦C by 2050, while also meeting global energy demands. Climate change and energy production are not mutually exclusive; global population growth has direct impacts on global energy demands and climate. In both catalysis and adsorption applications, new technologies are needed to address these challenges. Catalysis can provide alternate, low-energy routes for converting low-value gases into higher-value chemical commodities, thus altering our current energy production. Likewise, new sorption materials can capture previously emitted CO2 from decades of energy production from fossil fuels, thus helping to …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Constructing Carbon-Encapsulated Nifev-Based Electrocatalysts By Alkoxide-Based Self-Template Method For Oxygen Evolution Reaction, En-Hui Ma, Xu-Po Liu, Tao Shen, De-Li Wang Nov 2023

Constructing Carbon-Encapsulated Nifev-Based Electrocatalysts By Alkoxide-Based Self-Template Method For Oxygen Evolution Reaction, En-Hui Ma, Xu-Po Liu, Tao Shen, De-Li Wang

Journal of Electrochemistry

The development of green and sustainable water-splitting hydrogen production technology is beneficial to reducing the over-reliance on fossil fuels and realizing the strategic goal of "carbon neutral". As one of the half reactions for water splitting, oxygen evolution reaction has suffered the problems of sluggish four-electron transfer process and relatively slow reaction kinetics. Therefore, exploring efficient and stable catalysts for oxygen evolution reaction is of critical importance for water-splitting technology. Metal alkoxides are a series of compounds formed by the coordination function of metal ions with alcohol molecules. Metal alkoxides possess the double advantages of organic materials and inorganic materials, …


Integration Of Algae And Biomass Processes To Synthesize Renewable Bioproducts For The Circular Economy, Jessica Martin Nov 2023

Integration Of Algae And Biomass Processes To Synthesize Renewable Bioproducts For The Circular Economy, Jessica Martin

USF Tampa Graduate Theses and Dissertations

Rapid population growth and global industrialization have substantially heightened the demand for fossil-based fuels and products in various sectors of the global economy, including energy production, transportation fuels, and as raw materials for petrochemicals. The intense consumption of fossil fuels has caused immense environmental impacts, especially pertaining to carbon dioxide emissions. Shifting to renewable feedstocks (raw materials) is expected to reduce these emissions by lowering the carbon footprint of fuels and products compared to traditional fossil-derived alternatives. This transition aligns with the goal of creating a sustainable and circular economy, emphasizing efficient resource use, and reducing waste generation through recycling …


Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe Nov 2023

Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe

Masters Theses

Polymer coatings offer a wide range of benefits across various industries, playing a crucial role in product protection and extension of shelf life. However, formulating them can be a non-trivial task given the multitude of variables and factors involved in the production process, rendering it a complex, high-dimensional problem. To tackle this problem, machine learning (ML) has emerged as a promising tool, showing considerable potential in enhancing various polymer and chemistry-based applications, particularly those dealing with high dimensional complexities.

Our research aims to develop a physics-guided ML approach to facilitate the formulations of polymer coatings. As the first step, this …


Computational Modeling Using A Novel Continuum Approach Coupled With Pathway-Informed Neural Networks To Optimize Dynein-Mediated Centrosome Positioning In Polarized Cells, Arkaprovo Ghosal, Padmanabhan Seshaiyar Dr., Adriana Dawes Dr., General Genomics Inc. Nov 2023

Computational Modeling Using A Novel Continuum Approach Coupled With Pathway-Informed Neural Networks To Optimize Dynein-Mediated Centrosome Positioning In Polarized Cells, Arkaprovo Ghosal, Padmanabhan Seshaiyar Dr., Adriana Dawes Dr., General Genomics Inc.

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.