Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu May 2023

Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu

Graduate Theses and Dissertations

Dissipative particle dynamics (DPD), a coarse grain simulation method, was applied to the membrane formation process of non-solvent induced phase separation (NIPS) to gain further insight on the mechanism of certain variables and how they affect the final morphology. NIPS involves two solutions, an organic polymer dissolved in an organic solvent colloquially called the dope and an aqueous coagulation bath, brought into contact with one another. The solvents then mix, causing the polymer to fall out of solution as an asymmetric membrane with a dense surface layer and a more open subsurface layer in response to the decreasing solubility. Polyethersulfone …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


A Versatile Python Package For Simulating Dna Nanostructures With Oxdna, Kira Threlfall May 2022

A Versatile Python Package For Simulating Dna Nanostructures With Oxdna, Kira Threlfall

Computer Science and Computer Engineering Undergraduate Honors Theses

The ability to synthesize custom DNA molecules has led to the feasibility of DNA nanotechnology. Synthesis is time-consuming and expensive, so simulations of proposed DNA designs are necessary. Open-source simulators, such as oxDNA, are available but often difficult to configure and interface with. Packages such as oxdna-tile-binding pro- vide an interface for oxDNA which allows for the ability to create scripts that automate the configuration process. This project works to improve the scripts in oxdna-tile-binding to improve integration with job scheduling systems commonly used in high-performance computing environments, improve ease-of-use and consistency within the scripts compos- ing oxdna-tile-binding, and move …


A Discrete-Event Simulation Approach For Modeling Human Body Glucose Metabolism, Buket Aydas Aug 2018

A Discrete-Event Simulation Approach For Modeling Human Body Glucose Metabolism, Buket Aydas

Theses and Dissertations

This dissertation describes CarbMetSim (Carbohydrate Metabolism Simulator), a discrete-event simulator that tracks the blood glucose level of a person in response to a timed sequence of diet and exercise activities. CarbMetSim implements broader aspects of carbohydrate metabolism in human beings with the objective of capturing the average impact of various diet/exercise activities on the blood glucose level. Key organs (stomach, intestine, portal vein, liver, kidney, muscles, adipose tissue, brain and heart) are implemented to the extent necessary to capture their impact on the production and consumption of glucose. Key metabolic pathways (glucose oxidation, glycolysis and gluconeogenesis) are accounted for by …


Parallelization Of A Three-Dimensional Full Multigrid Algorithm To Simulate Tumor Growth, Dylan Goodin, Chin F. Ng, Hermann B. Frieboes Oct 2017

Parallelization Of A Three-Dimensional Full Multigrid Algorithm To Simulate Tumor Growth, Dylan Goodin, Chin F. Ng, Hermann B. Frieboes

Commonwealth Computational Summit

We present the performance gains of an openMP implementation of a fully adaptive nonlinear full multigrid (FMG) algorithm to simulate three-dimensional multispecies desmoplastic tumor growth on computer systems of varying processing capabilities. The FMG algorithm is applied to solve a recently published thermodynamic mixture model that uses a diffuse interface approach with fourth-order reaction-advection-diffusion PDEs (Cahn-Hilliard-type equations) that are coupled, nonlinear, and numerically stiff. The model includes multiple cell species and extracellular matrix (ECM), with adhesive and elastic energy contributions in chemical potential terms, as well as including blood and lymphatic vessels represented as continuous vasculatures. Advection-reaction-diffusion PDEs are employed …