Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou Aug 2015

Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou

STAR Program Research Presentations

Metal organic frameworks (MOFs) are synthetic materials made of a cage-like lattice of metal nodes connected by organic linkers. The pores between the nodes define the characteristics of the material. A MOF, MIL-101, has shown great capacity in the adsorption of carbon dioxide and methane, as well as in hydrogenation catalysis with palladium. While there has been success in synthesizing MIL-101 and other MOFs, the mechanistic details behind their assembly remain unknown. Understanding the synthesis mechanism is necessary to understand the kinetics involved and be able to produce this useful material on an industrial scale. Using MIL-101 as a prototypical …


Fission Fragment Tracking And Identification In The Neutron-Induced Fission Fragment Tracking Experiment’S Time Projection Chamber, Eric Song Mar 2015

Fission Fragment Tracking And Identification In The Neutron-Induced Fission Fragment Tracking Experiment’S Time Projection Chamber, Eric Song

Physics

The Neutron-Induced Fission Fragment Tracking Experiment (NIFFTE) built a novel Time Projection Chamber (TPC), the FissionTPC, for measuring neutron-induced fission cross-sections to unprecedented precision. We investigated data from a 2014 run (400010151) at the Los Alamos Neutron Science Center (LANSCE) with a double-sided U235/Pu239 target. Our particle identification studies will aid in the development of improved tracking algorithms.


Characterizing Double And Triple Laser Beam Interference Patterns In The Context Of Trapping Atoms For Quantum Computing, Ian E. Powell Jan 2015

Characterizing Double And Triple Laser Beam Interference Patterns In The Context Of Trapping Atoms For Quantum Computing, Ian E. Powell

Physics

We propose two optical neutral atom traps for quantum computing involving the intersection of two or three laser beams. We simulate both the intensity and the potential energy of the interference pattern. From these simulations we create animations of how the potential energy and intensity change with varying angles of separation between the laser beams in the system. We parameterize lines through our interference pattern and fit simple harmonic oscillator potential energies to the potential energy wells calculated to characterize our interference pattern’s atom trapping capabilities. Finally, we investigate a possible quantum entanglement routine by observing how the geometry of …