Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Generating Light Curves From Simulated Active Galactic Nuclei Data, William Yuan Aug 2022

Generating Light Curves From Simulated Active Galactic Nuclei Data, William Yuan

Undergraduate Student Research Internships Conference

Active Galactic Nuclei (AGN) are growing supermassive black holes found at the centers of massive galaxies. My research involves gathering data by simulating the light emitted by AGN, and then plotting the simulated light in the form of light curves.


Where Are The Habitable Planets In Our Local Group Of Galaxies?, William C. Windsor Aug 2022

Where Are The Habitable Planets In Our Local Group Of Galaxies?, William C. Windsor

Undergraduate Student Research Internships Conference

No abstract provided.


Developing A Bytownite Calibration Curve As A Lunar Analogue, Trevor W. Matterson Aug 2021

Developing A Bytownite Calibration Curve As A Lunar Analogue, Trevor W. Matterson

Undergraduate Student Research Internships Conference

Planetary analogue materials are useful to help interpret and predict planetary processes on other planetary bodies that we cannot observe directly. Lunar analogue materials include terrestrial rocks and minerals with compositions and textures like those on the moon. This project investigates the lunar analogue mineral bytownite to quantify shock effects on the moon using strain related mosaicity determined through micro x-ray diffraction (µXRD). Calibrating strain information as a function of shock pressure for these minerals will enable us to extract peak shock pressures (in GPa) from naturally shocked materials, such as lunar meteorites and Apollo samples, using µXRD


An Analytical And Numerical Treatment Of The Carter Constant For Inclined Elliptical Orbits About A Massive Kerr Black Hole, Peter Komorowski, Sree Ram Valluri, Martin Houde Feb 2010

An Analytical And Numerical Treatment Of The Carter Constant For Inclined Elliptical Orbits About A Massive Kerr Black Hole, Peter Komorowski, Sree Ram Valluri, Martin Houde

WORLDiscoveries Research Showcase

In an extreme binary black hole system, an orbit will increase its angle of inclination (i) as it evolves in Kerr spacetime. We focus our attention on the behaviour of the Carter constant (Q) for near-polar orbits. The value of Q for bound orbits is non-negative; and an increase in Q corresponds to an increase in i. For a Schwarzschild black hole, the polar orbit represents the boundary between the prograde and retrograde orbits at which Q is at its maximum value. The introduction of spin (S = |J|/M2) to the massive black hole causes this boundary, or Abutment, to …