Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

PDF

2022

Machine learning

Institution
Publication
Publication Type

Articles 61 - 75 of 75

Full-Text Articles in Physical Sciences and Mathematics

Classification Of Electropherograms Using Machine Learning For Parkinson’S Disease, Soroush Dehghan Jan 2022

Classification Of Electropherograms Using Machine Learning For Parkinson’S Disease, Soroush Dehghan

Electronic Theses and Dissertations

Parkinson’s disease (PD) is a neurodegenerative movement disorder that progresses gradually over time. The onset of symptoms in people who are suffering from PD can vary from case to case, and it depends on the progression of the disease in each patient. The PD symptoms gradually develop and exacerbate the patient’s movements throughout time. An early diagnosis of PD could improve the outcomes of treatments and could potentially delay the progression of this disorder and that makes discovering a new diagnostic method valuable. In this study, I investigate the feasibility of using a machine learning (ML) approach to classify PD …


Security Concerns On Machine Learning Solutions For 6g Networks In Mmwave Beam Prediction, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Umit Cali, Devrim Unal Jan 2022

Security Concerns On Machine Learning Solutions For 6g Networks In Mmwave Beam Prediction, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Umit Cali, Devrim Unal

Engineering Technology Faculty Publications

6G – sixth generation – is the latest cellular technology currently under development for wireless communication systems. In recent years, machine learning (ML) algorithms have been applied widely in various fields, such as healthcare, transportation, energy, autonomous cars, and many more. Those algorithms have also been used in communication technologies to improve the system performance in terms of frequency spectrum usage, latency, and security. With the rapid developments of ML techniques, especially deep learning (DL), it is critical to consider the security concern when applying the algorithms. While ML algorithms offer significant advantages for 6G networks, security concerns on artificial …


Post-Quantum Secure Identity-Based Encryption Scheme Using Random Integer Lattices For Iot-Enabled Ai Applications, Dharminder Dharminder, Ashok Kumar Das, Sourav Saha, Basudeb Bera, Athanasios V. Vasilakos Jan 2022

Post-Quantum Secure Identity-Based Encryption Scheme Using Random Integer Lattices For Iot-Enabled Ai Applications, Dharminder Dharminder, Ashok Kumar Das, Sourav Saha, Basudeb Bera, Athanasios V. Vasilakos

VMASC Publications

Identity-based encryption is an important cryptographic system that is employed to ensure confidentiality of a message in communication. This article presents a provably secure identity based encryption based on post quantum security assumption. The security of the proposed encryption is based on the hard problem, namely Learning with Errors on integer lattices. This construction is anonymous and produces pseudo random ciphers. Both public-key size and ciphertext-size have been reduced in the proposed encryption as compared to those for other relevant schemes without compromising the security. Next, we incorporate the constructed identity based encryption (IBE) for Internet of Things (IoT) applications, …


A Citizen-Science Approach For Urban Flood Risk Analysis Using Data Science And Machine Learning, Candace Agonafir Jan 2022

A Citizen-Science Approach For Urban Flood Risk Analysis Using Data Science And Machine Learning, Candace Agonafir

Dissertations and Theses

Street flooding is problematic in urban areas, where impervious surfaces, such as concrete, brick, and asphalt prevail, impeding the infiltration of water into the ground. During rain events, water ponds and rise to levels that cause considerable economic damage and physical harm. The main goal of this dissertation is to develop novel approaches toward the comprehension of urban flood risk using data science techniques on crowd-sourced data. This is accomplished by developing a series of data-driven models to identify flood factors of significance and localized areas of flood vulnerability in New York City (NYC). First, the infrastructural (catch basin clogs, …


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


Classifying Blood Glucose Levels Through Noninvasive Features, Rishi Reddy Jan 2022

Classifying Blood Glucose Levels Through Noninvasive Features, Rishi Reddy

Graduate Theses, Dissertations, and Problem Reports

Blood glucose monitoring is a key process in the prevention and management of certain chronic diseases, such as diabetes. Currently, glucose monitoring for those interested in their blood glucose levels are confronted with options that are primarily invasive and relatively costly. A growing topic of note is the development of non-invasive monitoring methods for blood glucose. This development holds a significant promise for improvement to the quality of life of a significant portion of the population and is overall met with great enthusiasm from the scientific community as well as commercial interest. This work aims to develop a potential pipeline …


A Synthetic Prediction Market For Estimating Confidence In Published Work, Sarah Rajtmajer, Christopher Griffin, Jian Wu, Robert Fraleigh, Laxmann Balaji, Anna Squicciarini, Anthony Kwasnica, David Pennock, Michael Mclaughlin, Timothy Fritton, Nishanth Nakshatri, Arjun Menon, Sai Ajay Modukuri, Rajal Nivargi, Xin Wei, Lee Giles Jan 2022

A Synthetic Prediction Market For Estimating Confidence In Published Work, Sarah Rajtmajer, Christopher Griffin, Jian Wu, Robert Fraleigh, Laxmann Balaji, Anna Squicciarini, Anthony Kwasnica, David Pennock, Michael Mclaughlin, Timothy Fritton, Nishanth Nakshatri, Arjun Menon, Sai Ajay Modukuri, Rajal Nivargi, Xin Wei, Lee Giles

Computer Science Faculty Publications

[First paragraph] Concerns about the replicability, robustness and reproducibility of findings in scientific literature have gained widespread attention over the last decade in the social sciences and beyond. This attention has been catalyzed by and has likewise motivated a number of large-scale replication projects which have reported successful replication rates between 36% and 78%. Given the challenges and resources required to run high-powered replication studies, researchers have sought other approaches to assess confidence in published claims. Initial evidence has supported the promise of prediction markets in this context. However, they require the coordinated, sustained effort of collections of human experts …


Camouflaged Poisoning Attack On Graph Neural Networks, Chao Jiang, Yi He, Richard Chapman, Hongyi Wu Jan 2022

Camouflaged Poisoning Attack On Graph Neural Networks, Chao Jiang, Yi He, Richard Chapman, Hongyi Wu

Computer Science Faculty Publications

Graph neural networks (GNNs) have enabled the automation of many web applications that entail node classification on graphs, such as scam detection in social media and event prediction in service networks. Nevertheless, recent studies revealed that the GNNs are vulnerable to adversarial attacks, where feeding GNNs with poisoned data at training time can lead them to yield catastrophically devastative test accuracy. This finding heats up the frontier of attacks and defenses against GNNs. However, the prior studies mainly posit that the adversaries can enjoy free access to manipulate the original graph, while obtaining such access could be too costly in …


From Negative To Positive Algorithm Rights, Cary Coglianese, Kat Hefter Jan 2022

From Negative To Positive Algorithm Rights, Cary Coglianese, Kat Hefter

All Faculty Scholarship

Artificial intelligence, or “AI,” is raising alarm bells. Advocates and scholars propose policies to constrain or even prohibit certain AI uses by governmental entities. These efforts to establish a negative right to be free from AI stem from an understandable motivation to protect the public from arbitrary, biased, or unjust applications of algorithms. This movement to enshrine protective rights follows a familiar pattern of suspicion that has accompanied the introduction of other technologies into governmental processes. Sometimes this initial suspicion of a new technology later transforms into widespread acceptance and even a demand for its use. In this paper, we …


Faking Sensor Noise Information, Justin Chang Jan 2022

Faking Sensor Noise Information, Justin Chang

Master's Projects

Noise residue detection in digital images has recently been used as a method to classify images based on source camera model type. The meteoric rise in the popularity of using Neural Network models has also been used in conjunction with the concept of noise residuals to classify source camera models. However, many papers gloss over the details on the methods of obtaining noise residuals and instead rely on the self- learning aspect of deep neural networks to implicitly discover this themselves. For this project I propose a method of obtaining noise residuals (“noiseprints”) and denoising an image, as well as …


Identifying Network Biomarkers For Each Breast Cancer Subtypes Along With Their Effective Single And Paired Repurposed Drugs Using Network-Based Machine Learning Techniques, Forough Firoozbakht Jan 2022

Identifying Network Biomarkers For Each Breast Cancer Subtypes Along With Their Effective Single And Paired Repurposed Drugs Using Network-Based Machine Learning Techniques, Forough Firoozbakht

Electronic Theses and Dissertations

Breast cancer is a complex disease that can be classified into at least 10 different molecular subtypes. Appropriate diagnosis of specific subtypes is critical for ensuring the best possible patient treatment and response to therapy. Current computational methods for determining the subtypes are based on identifying differentially expressed genes (i.e., biomarkers) that can best discriminate the subtypes. Such approaches, however, are known to be unreliable since they yield different biomarker sets when applied to data sets from different studies. Gathering knowledge about the functional relationship among genes will identify “network biomarkers” that will enrich the criteria for biomarker selection. Cancer …


Antitrust By Algorithm, Cary Coglianese, Alicia Lai Jan 2022

Antitrust By Algorithm, Cary Coglianese, Alicia Lai

All Faculty Scholarship

Technological innovation is changing private markets around the world. New advances in digital technology have created new opportunities for subtle and evasive forms of anticompetitive behavior by private firms. But some of these same technological advances could also help antitrust regulators improve their performance in detecting and responding to unlawful private conduct. We foresee that the growing digital complexity of the marketplace will necessitate that antitrust authorities increasingly rely on machine-learning algorithms to oversee market behavior. In making this transition, authorities will need to meet several key institutional challenges—building organizational capacity, avoiding legal pitfalls, and establishing public trust—to ensure successful …


Facial Landmark Feature Fusion In Transfer Learning Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Norou Diawara, Khan M. Iftekharuddin Jan 2022

Facial Landmark Feature Fusion In Transfer Learning Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Norou Diawara, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Automatic classification of child facial expressions is challenging due to the scarcity of image samples with annotations. Transfer learning of deep convolutional neural networks (CNNs), pretrained on adult facial expressions, can be effectively finetuned for child facial expression classification using limited facial images of children. Recent work inspired by facial age estimation and age-invariant face recognition proposes a fusion of facial landmark features with deep representation learning to augment facial expression classification performance. We hypothesize that deep transfer learning of child facial expressions may also benefit from fusing facial landmark features. Our proposed model architecture integrates two input branches: a …


Artificial Intelligence And Machine Learning In Optical Information Processing: Introduction To The Feature Issue, Khan Iftekharuddin, Chrysanthe Preza, Abdul Ahad S. Awwal, Michael E. Zelinski Jan 2022

Artificial Intelligence And Machine Learning In Optical Information Processing: Introduction To The Feature Issue, Khan Iftekharuddin, Chrysanthe Preza, Abdul Ahad S. Awwal, Michael E. Zelinski

Electrical & Computer Engineering Faculty Publications

This special feature issue covers the intersection of topical areas in artificial intelligence (AI)/machine learning (ML) and optics. The papers broadly span the current state-of-the-art advances in areas including image recognition, signal and image processing, machine inspection/vision and automotive as well as areas of traditional optical sensing, interferometry and imaging.


Developing And Validating A Machine Learning-Based Student Attentiveness Tracking System, Andrew L. Sanders Jan 2022

Developing And Validating A Machine Learning-Based Student Attentiveness Tracking System, Andrew L. Sanders

Electronic Theses and Dissertations

Academic instructors and institutions desire the ability to accurately and autonomously measure the attentiveness of students in the classroom. Generally, college departments use unreliable direct communication from students (i.e. emails, phone calls), distracting and Hawthorne effect-inducing observational sit-ins, and end-of-semester surveys to collect feedback regarding their courses. Each of these methods of collecting feedback is useful but does not provide automatic feedback regarding the pace and direction of lectures. Young et al. discuss that attention levels during passive classroom lectures generally drop after about ten to thirty minutes and can be restored to normal levels with regular breaks, novel activities, …