Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Exciting And Harvesting Vibrational States In Harmonically Driven Granular Chains, Efstathios G. Charalampidis, Christopher Chong, Eunho Kim, Heetae Kim, F. Li, Panayotis G. Kevrekidis, J. Lydon, Chiara Daraio, Jianke Yang Jan 2015

Exciting And Harvesting Vibrational States In Harmonically Driven Granular Chains, Efstathios G. Charalampidis, Christopher Chong, Eunho Kim, Heetae Kim, F. Li, Panayotis G. Kevrekidis, J. Lydon, Chiara Daraio, Jianke Yang

Mathematics and Statistics Department Faculty Publication Series

This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multi-modal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the Nonlinear Schr¨odinger (NLS) equation predicts the corresponding modes fairly well. We propose that nonlinear multi-modal …


Dark Bright Solitons In Coupled Nonlinear Schrodinger Equations With Unequal Dispersion Coefficients, E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskaki, B. A. Malomed Jan 2015

Dark Bright Solitons In Coupled Nonlinear Schrodinger Equations With Unequal Dispersion Coefficients, E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskaki, B. A. Malomed

Mathematics and Statistics Department Faculty Publication Series

We study a two component nonlinear Schrodinger system with equal, repulsive cubic interactions and different dispersion coefficients in the two components. We consider states that have a dark solitary wave in one component. Treating it as a frozen one, we explore the possibility of the formation of bright solitonic structures in the other component. We identify bifurcation points at which such states emerge in the bright component in the linear limit and explore their continuation into the nonlinear regime. An additional analytically tractable limit is found to be that of vanishing dispersion of the bright component. We numerically identify regimes …


Pulses And Snakes In Ginzburg-Landau Equation, S.C. Mancas, Roy S. Choudhury Jan 2015

Pulses And Snakes In Ginzburg-Landau Equation, S.C. Mancas, Roy S. Choudhury

Publications

Using a variational formulation for partial differential equations combined with numerical simulations on ordinary differential equations (ODEs), we find two categories (pulses and snakes) of dissipative solitons, and analyze the dependence of both their shape and stability on the physical parameters of the cubic-quintic Ginzburg–Landau equation (CGLE). In contrast to the regular solitary waves investigated in numerous integrable and non-integrable systems over the last three decades, these dissipative solitons are not stationary in time. Rather, they are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. Numerical simulations reveal very interesting bifurcations sequences as the parameters of the CGLE …