Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Two-Dimensional Structures In The Quintic Ginzburg-Landau Equation, Florent Bérard, Charles-Julien Vandamme, S.C. Mancas Aug 2015

Two-Dimensional Structures In The Quintic Ginzburg-Landau Equation, Florent Bérard, Charles-Julien Vandamme, S.C. Mancas

Publications

By using ZEUS cluster at Embry-Riddle Aeronautical University we perform extensive numerical simulations based on a two-dimensional Fourier spectral method Fourier spatial discretization and an explicit scheme for time differencing) to find the range of existence of the spatiotemporal solitons of the two-dimensional complex Ginzburg-Landau equation with cubic and quintic nonlinearities. We start from the parameters used by Akhmediev et. al. and slowly vary them one by one to determine the regimes where solitons exist as stable/unstable structures. We present eight classes of dissipative solitons from which six are known (stationary, pulsating, vortex spinning, filament, exploding, creeping) and two are …


Exciting And Harvesting Vibrational States In Harmonically Driven Granular Chains, Efstathios G. Charalampidis, Christopher Chong, Eunho Kim, Heetae Kim, F. Li, Panayotis G. Kevrekidis, J. Lydon, Chiara Daraio, Jianke Yang Jan 2015

Exciting And Harvesting Vibrational States In Harmonically Driven Granular Chains, Efstathios G. Charalampidis, Christopher Chong, Eunho Kim, Heetae Kim, F. Li, Panayotis G. Kevrekidis, J. Lydon, Chiara Daraio, Jianke Yang

Mathematics and Statistics Department Faculty Publication Series

This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multi-modal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the Nonlinear Schr¨odinger (NLS) equation predicts the corresponding modes fairly well. We propose that nonlinear multi-modal …


Solitary Waves In A Discrete Nonlinear Dirac Equation, Jesús Cuevas–Maraver, Panayotis G. Kevrekidis, Avadh Saxena Jan 2015

Solitary Waves In A Discrete Nonlinear Dirac Equation, Jesús Cuevas–Maraver, Panayotis G. Kevrekidis, Avadh Saxena

Mathematics and Statistics Department Faculty Publication Series

In the present work, we introduce a discrete formulation of the nonlinear Dirac equation in the form of a discretization of the Gross–Neveu model. The motivation for this discrete model proposal is both computational (near the continuum limit) and theoretical (using the understanding of the anti-continuum limit of vanishing coupling). Numerous unexpected features are identified including a staggered solitary pattern emerging from a single site excitation, as well as two- and three-site excitations playing a role analogous to one- and two-site excitations, respectively, of the discrete nonlinear Schrödinger analogue of the model. Stability exchanges between the two- and three-site states …


Dark Bright Solitons In Coupled Nonlinear Schrodinger Equations With Unequal Dispersion Coefficients, E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskaki, B. A. Malomed Jan 2015

Dark Bright Solitons In Coupled Nonlinear Schrodinger Equations With Unequal Dispersion Coefficients, E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskaki, B. A. Malomed

Mathematics and Statistics Department Faculty Publication Series

We study a two component nonlinear Schrodinger system with equal, repulsive cubic interactions and different dispersion coefficients in the two components. We consider states that have a dark solitary wave in one component. Treating it as a frozen one, we explore the possibility of the formation of bright solitonic structures in the other component. We identify bifurcation points at which such states emerge in the bright component in the linear limit and explore their continuation into the nonlinear regime. An additional analytically tractable limit is found to be that of vanishing dispersion of the bright component. We numerically identify regimes …


Pulses And Snakes In Ginzburg-Landau Equation, S.C. Mancas, Roy S. Choudhury Jan 2015

Pulses And Snakes In Ginzburg-Landau Equation, S.C. Mancas, Roy S. Choudhury

Publications

Using a variational formulation for partial differential equations combined with numerical simulations on ordinary differential equations (ODEs), we find two categories (pulses and snakes) of dissipative solitons, and analyze the dependence of both their shape and stability on the physical parameters of the cubic-quintic Ginzburg–Landau equation (CGLE). In contrast to the regular solitary waves investigated in numerous integrable and non-integrable systems over the last three decades, these dissipative solitons are not stationary in time. Rather, they are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. Numerical simulations reveal very interesting bifurcations sequences as the parameters of the CGLE …


Positive And Negative Mass Solitons In Spin-Orbit Coupled Bose-Einstein Condensates, V. Achilleos, D.J. Frantzeskakis, P. G. Kevrekidis, P. Schmelcher, J. Stockhofe Jan 2015

Positive And Negative Mass Solitons In Spin-Orbit Coupled Bose-Einstein Condensates, V. Achilleos, D.J. Frantzeskakis, P. G. Kevrekidis, P. Schmelcher, J. Stockhofe

Mathematics and Statistics Department Faculty Publication Series

We present a unified description of different types of matter-wave solitons that can emerge in quasi one-dimensional spin-orbit coupled (SOC) Bose-Einstein condensates (BECs). This description relies on the reduction of the original two-component Gross-Pitaevskii SOC-BEC model to a single nonlinear Schrödinger equation, via a multiscale expansion method. This way, we find approximate bright and dark soliton solutions, for attractive and repulsive interatomic interactions respectively, for different regimes of the SOC interactions. Beyond this, our approach also reveals “negative mass” regimes, where corresponding “negative mass” bright or dark solitons can exist for repulsive or attractive interactions, respectively. Such a unique opportunity …