Open Access. Powered by Scholars. Published by Universities.®

Translational Medical Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Translational Medical Research

The Role Of Perivascular Fibrosis In Post-Stroke Glymphatic Impairment And Cerebral Amyloid Angiopathy, Matthew D. Howe Aug 2018

The Role Of Perivascular Fibrosis In Post-Stroke Glymphatic Impairment And Cerebral Amyloid Angiopathy, Matthew D. Howe

Dissertations & Theses (Open Access)

In healthy brain tissue, toxic amyloid-β (Aβ) proteins are transported by the pulsatile flow of cerebrospinal fluid (CSF) along perivascular drainage pathways. Ischemic stroke may disrupt this process, leading to a perivascular build-up of Aβ, termed cerebral amyloid angiopathy (CAA). I hypothesize that an abnormal pattern of extracellular matrix deposition within the vascular basement membrane, termed fibrosis, impairs Aβ drainage from the aged brain after stroke. I further hypothesize that inhibition of astrocytic transforming growth factor-β (TGF-β) signaling can reverse these phenotypes. Finally, I also hypothesize that serum biomarkers of perivascular fibrosis can be used to diagnose CAA following intracerebral …


Rad Gtpase Deletion Atenuates Post-Ischemic Cardiac Dysfunction And Remodeling, Janet R. Manning, Lakshman Chelvarajan, Bryana R. Levitan, Catherine Nicole Kaminski Withers, Prabhakara R. Nagareddy, Christopher M. Haggerty, Brandon K. Fornwalt, Erhe Gao, Himi Tripathi, Ahmed Abdel-Latif, Douglas A. Andres, Jonathan Satin Feb 2018

Rad Gtpase Deletion Atenuates Post-Ischemic Cardiac Dysfunction And Remodeling, Janet R. Manning, Lakshman Chelvarajan, Bryana R. Levitan, Catherine Nicole Kaminski Withers, Prabhakara R. Nagareddy, Christopher M. Haggerty, Brandon K. Fornwalt, Erhe Gao, Himi Tripathi, Ahmed Abdel-Latif, Douglas A. Andres, Jonathan Satin

Physiology Faculty Publications

The protein Rad interacts with the L-type calcium channel complex to modulate trigger Ca2+ and hence to govern contractility. Reducing Rad levels increases cardiac output. Ablation of Rad also attenuated the inflammatory response following acute myocardial infarction. Future studies to target deletion of Rad in the heart could be conducted to establish a novel treatment paradigm whereby pathologically stressed hearts would be given safe, stable positive inotropic support without arrhythmias and without pathological structural remodeling. Future investigations will also focus on establishing inhibitors of Rad and testing the efficacy of Rad deletion in cardioprotection relative to the time of …