Open Access. Powered by Scholars. Published by Universities.®

Women's Health Commons

Open Access. Powered by Scholars. Published by Universities.®

Breast cancer

Medical Sciences

Chapman University

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Women's Health

Activity Of Distinct Growth Factor Receptor Network Components In Breast Tumors Uncovers Two Biologically Relevant Subtypes, Moom Roosan, Shelley M. Macneil, David F. Jenkins, Gajendra Shrestha, Sydney R. Wyatt, Jasmine A. Mcquerry, Stephen R. Piccolo, Laura M. Heiser, Joe W. Gray, W. Evan Johnson, Andrea H. Bild Apr 2017

Activity Of Distinct Growth Factor Receptor Network Components In Breast Tumors Uncovers Two Biologically Relevant Subtypes, Moom Roosan, Shelley M. Macneil, David F. Jenkins, Gajendra Shrestha, Sydney R. Wyatt, Jasmine A. Mcquerry, Stephen R. Piccolo, Laura M. Heiser, Joe W. Gray, W. Evan Johnson, Andrea H. Bild

Pharmacy Faculty Articles and Research

Background
The growth factor receptor network (GFRN) plays a significant role in driving key oncogenic processes. However, assessment of global GFRN activity is challenging due to complex crosstalk among GFRN components, or pathways, and the inability to study complex signaling networks in patient tumors. Here, pathway-specific genomic signatures were used to interrogate GFRN activity in breast tumors and the consequent phenotypic impact of GRFN activity patterns.

Methods
Novel pathway signatures were generated in human primary mammary epithelial cells by overexpressing key genes from GFRN pathways (HER2, IGF1R, AKT1, EGFR, KRAS (G12V), RAF1, BAD). The pathway analysis toolkit Adaptive Signature Selection …


Real-Time Detection Of Breast Cancer Cells Using Peptidefunctionalized Microcantilever Arrays, Hashem Etayash, Keren Jiang, Sarfuddin Azmi, Thomas Thundat, Kamaljit Kaur Oct 2015

Real-Time Detection Of Breast Cancer Cells Using Peptidefunctionalized Microcantilever Arrays, Hashem Etayash, Keren Jiang, Sarfuddin Azmi, Thomas Thundat, Kamaljit Kaur

Pharmacy Faculty Articles and Research

Ligand-directed targeting and capturing of cancer cells is a new approach for detecting circulating tumor cells (CTCs). Ligands such as antibodies have been successfully used for capturing cancer cells and an antibody based system (CellSearch®) is currently used clinically to enumerate CTCs. Here we report the use of a peptide moiety in conjunction with a microcantilever array system to selectively detect CTCs resulting from cancer, specifically breast cancer. A sensing microcantilever, functionalized with a breast cancer specific peptide 18-4 (WxEAAYQrFL), showed significant deflection on cancer cell (MCF7 and MDA-MB-231) binding compared to when exposed to noncancerous (MCF10A and HUVEC) cells. …