Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanotechnology

Synthesis And Characterization Of Cr-Znga2o4 And Eu-Ca3(Po4)2 Composite, Benjamin Hulme Aug 2022

Synthesis And Characterization Of Cr-Znga2o4 And Eu-Ca3(Po4)2 Composite, Benjamin Hulme

Undergraduate Student Research Internships Conference

No abstract provided.


Development Of Self-Assembling Nanoparticles For Drug Delivery Applications, Young Chan Kim, Craig Sweet, Helen Margaret Flynn, David H. Thompson Aug 2017

Development Of Self-Assembling Nanoparticles For Drug Delivery Applications, Young Chan Kim, Craig Sweet, Helen Margaret Flynn, David H. Thompson

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bladder cancer is the ninth most common cancer in the world, and occurs in nearly four percent of all men. Although many cases are diagnosed as early stage cancer and the tumor can be removed by surgery, reoccurrence rates are high making treatment difficult and thus one of the most expensive cancers. To address this problem, drugs are injected intravesically after tumor removal to kill any residual cancer that may cause reoccurrence. While this was a significant improvement over surgery alone, high toxicity along with short residence times in the bladder limited its effectiveness. To combat these shortcomings, we will …


Using Collagen Binding Poly(N-Isopropylacrylamide) Nanoparticles To Prevent Intravascular Platelet Adhesion And Activation, Anna E. Searle, Alyssa Panitch, James Mcmasters Aug 2014

Using Collagen Binding Poly(N-Isopropylacrylamide) Nanoparticles To Prevent Intravascular Platelet Adhesion And Activation, Anna E. Searle, Alyssa Panitch, James Mcmasters

The Summer Undergraduate Research Fellowship (SURF) Symposium

Balloon angioplasty, the most prevalent non-surgical treatment for Atherosclerosis, damages the endothelial layer of the artery, baring an underlying collagenous layer, which causes platelet adhesion and activation and eventual thrombosis and intimal hyperplasia. Previous work in our lab has used a collagen-binding peptidoglycan, dermatan-sulfate-SILY (DS-SILY), that has been shown to bind to type I collagen and prevent platelet adhesion and activation. Our goal is to fabricate nanoparticle-SILY by cross-linking SILY to a poly(N-isopropylacrylamide) (NIPAm) nanoparticle instead of a DS backbone, while retaining the SILY’s high collagen binding affinity and platelet inhibition capacity observed in DS-SILY. Using a biotin-streptavidin assay, we …