Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Pharmaceutics and Drug Design

Biomaterials

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanotechnology

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review …


In Vitro Analysis Of Nanoparticulate Hydroxyapatite/Chitosan Composites As Potential Drug Delivery Platforms For The Sustained Release Of Antibiotics In The Treatment Of Osteomyelitis, Vuk Uskoković, Tejal A. Dasai Jan 2014

In Vitro Analysis Of Nanoparticulate Hydroxyapatite/Chitosan Composites As Potential Drug Delivery Platforms For The Sustained Release Of Antibiotics In The Treatment Of Osteomyelitis, Vuk Uskoković, Tejal A. Dasai

Pharmacy Faculty Articles and Research

Nanoparticulate composites of hydroxyapatite (HAp) and chitosan were synthesized by ultrasound-assisted sequential precipitation and characterized for their microstructure at the atomic scale, surface charge, drug release properties, and combined antibacterial and osteogenic response. Crystallinity of HAp nanoparticles was reduced because of the interference of the surface layers of chitosan with the dissolution/reprecipitation-mediated recrystallization mechanism that conditions the transition from the as-precipitated amorphous calcium phosphate phase to the most thermodynamically stable one—HAp. Embedment of 5–10 nm sized, narrowly dispersed HAp nanoparticles within the polymeric matrix mitigated the burst release of the small molecule model drug, fluorescein, bound to HAp by physisorption, …