Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Old Dominion University

Electricity

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanotechnology

Nanosecond Pulsed Electric Field Induced Cytoskeleton, Nuclear Membrane And Telomere Damage Adversely Impact Cell Survival, Michael W. Stacey, P. Fox, S. Buescher, Juergen F. Kolb Jan 2011

Nanosecond Pulsed Electric Field Induced Cytoskeleton, Nuclear Membrane And Telomere Damage Adversely Impact Cell Survival, Michael W. Stacey, P. Fox, S. Buescher, Juergen F. Kolb

Bioelectrics Publications

We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and …


Bioelectric Effects Of Intense Nanosecond Pulses, Karl H. Schoenbach, Barbara Y. Hargrave, Ravindra P. Joshi, Juergen F. Kolb, Richard Nuccitelli, Christopher J. Osgood, Andrei G. Pakhomov, Michael W. Stacey, James R. Swanson, Jody A. White, Shu Xiao, Jue Zhang, Stephen J. Beebe, Peter F. Blackmore, E. Stephen Buescher Jan 2007

Bioelectric Effects Of Intense Nanosecond Pulses, Karl H. Schoenbach, Barbara Y. Hargrave, Ravindra P. Joshi, Juergen F. Kolb, Richard Nuccitelli, Christopher J. Osgood, Andrei G. Pakhomov, Michael W. Stacey, James R. Swanson, Jody A. White, Shu Xiao, Jue Zhang, Stephen J. Beebe, Peter F. Blackmore, E. Stephen Buescher

Bioelectrics Publications

Electrical models for biological cells predict that reducing the duration of applied electrical pulses to values below the charging time of the outer cell membrane (which is on the order of 100 ns for mammalian cells) causes a strong increase in the probability of electric field interactions with intracellular structures due to displacement currents. For electric field amplitudes exceeding MV/m, such pulses are also expected to allow access to the cell interior through conduction currents flowing through the permeabilized plasma membrane. In both cases, limiting the duration of the electrical pulses to nanoseconds ensures only nonthermal interactions of the electric …