Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Calcium

Discipline
Institution
Publication Year
Publication
File Type

Articles 1 - 30 of 50

Full-Text Articles in Medical Sciences

Caldendrin Is A Repressor Of Piezo2 Channels And Touch Sensation In Mice, Josue A Lopez, Luis O Romero, Wai-Lin Kaung, J Wesley Maddox, Valeria Vásquez, Amy Lee Mar 2024

Caldendrin Is A Repressor Of Piezo2 Channels And Touch Sensation In Mice, Josue A Lopez, Luis O Romero, Wai-Lin Kaung, J Wesley Maddox, Valeria Vásquez, Amy Lee

Journal Articles

The sense of touch is crucial for cognitive, emotional, and social development and relies on mechanically activated (MA) ion channels that transduce force into an electrical signal. Despite advances in the molecular characterization of these channels, the physiological factors that control their activity are poorly understood. Here, we used behavioral assays, electrophysiological recordings, and various mouse strains (males and females analyzed separately) to investigate the role of the calmodulin-like Ca2+ sensor, caldendrin, as a key regulator of MA channels and their roles in touch sensation. In mice lacking caldendrin (Cabp1 KO), heightened responses to tactile stimuli correlate with enlarged …


Extended-Synaptotagmin-1 And -2 Control T Cell Signaling And Function, Nathalia Benavides, Claudio G. Giraudo Dec 2023

Extended-Synaptotagmin-1 And -2 Control T Cell Signaling And Function, Nathalia Benavides, Claudio G. Giraudo

Department of Microbiology and Immunology Faculty Papers

Upon T-cell activation, the levels of the secondary messenger diacylglycerol (DAG) at the plasma membrane need to be controlled to ensure appropriate T-cell receptor signaling and T-cell functions. Extended-Synaptotagmins (E-Syts) are a family of inter-organelle lipid transport proteins that bridge the endoplasmic reticulum and the plasma membrane. In this study, we identify a novel regulatory mechanism of DAG-mediated signaling for T-cell effector functions based on E-Syt proteins. We demonstrate that E-Syts downmodulate T-cell receptor signaling, T-cell-mediated cytotoxicity, degranulation, and cytokine production by reducing plasma membrane levels of DAG. Mechanistically, E-Syt2 predominantly modulates DAG levels at the plasma membrane in resting-state …


Ca2+ Efflux Facilitated By Co-Transport Of Inorganic Phosphate Anion In The H+/Ca2+ Antiporter Yfke, Wei Niu, Wenchang Zhou, Shuo Lu, Trung Vu, Vasanthi Jayaraman, José D Faraldo-Gómez, Lei Zheng May 2023

Ca2+ Efflux Facilitated By Co-Transport Of Inorganic Phosphate Anion In The H+/Ca2+ Antiporter Yfke, Wei Niu, Wenchang Zhou, Shuo Lu, Trung Vu, Vasanthi Jayaraman, José D Faraldo-Gómez, Lei Zheng

Journal Articles

Ca2+ is an important signaling messenger. In microorganisms, fungi, and plants, H+/Ca2+ antiporters (CAX) are known to play key roles in the homeostasis of intracellular Ca2+ by catalyzing its efflux across the cell membrane. Here, we reveal that the bacterial CAX homolog YfkE transports Ca2+ in two distinct modes: a low-flux H+/Ca2+ exchange mode and a high-flux mode in which Ca2+ and phosphate ions are co-transported (1:1) in exchange for H+. Coupling with phosphate greatly accelerates the Ca2+ efflux activity of YfkE. Our studies reveal that Ca2+ and phosphate bind to adjacent sites in a central translocation pathway and lead …


Sexual Dimorphism In Bidirectional Sr-Mitochondria Crosstalk In Ventricular Cardiomyocytes, Richard T Clements, Radmila Terentyeva, Shanna Hamilton, Paul M L Janssen, Karim Roder, Benjamin Y Martin, Fruzsina Perger, Timothy G Schneider, Zuzana Nichtova, Anindhya S Das, Roland Veress, Beth S Lee, Do-Gyoon Kim, Gideon Koren, Matthew S Stratton, György Csordás, Federica Accornero, Andriy E Belevych, Sandor Gyorke, Dmitry Terentyev May 2023

Sexual Dimorphism In Bidirectional Sr-Mitochondria Crosstalk In Ventricular Cardiomyocytes, Richard T Clements, Radmila Terentyeva, Shanna Hamilton, Paul M L Janssen, Karim Roder, Benjamin Y Martin, Fruzsina Perger, Timothy G Schneider, Zuzana Nichtova, Anindhya S Das, Roland Veress, Beth S Lee, Do-Gyoon Kim, Gideon Koren, Matthew S Stratton, György Csordás, Federica Accornero, Andriy E Belevych, Sandor Gyorke, Dmitry Terentyev

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged …


Micu1 Occludes The Mitochondrial Calcium Uniporter In Divalent-Free Conditions, Macarena Rodríguez-Prados, Elena Berezhnaya, Maria Teresa Castromonte, Sergio L. Menezes-Filho, Melanie Paillard, György Hajnóczky May 2023

Micu1 Occludes The Mitochondrial Calcium Uniporter In Divalent-Free Conditions, Macarena Rodríguez-Prados, Elena Berezhnaya, Maria Teresa Castromonte, Sergio L. Menezes-Filho, Melanie Paillard, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Mitochondrial Ca2+ uptake is mediated by the mitochondrial uniporter complex (mtCU) that includes a tetramer of the pore-forming subunit, MCU, a scaffold protein, EMRE, and the EF-hand regulatory subunit, MICU1 either homodimerized or heterodimerized with MICU2/3. MICU1 has been proposed to regulate Ca2+ uptake via the mtCU by physically occluding the pore and preventing Ca2+ flux at resting cytoplasmic [Ca2+] (free calcium concentration) and to increase Ca2+ flux at high [Ca2+] due to cooperative activation of MICUs EF-hands. However, mtCU and MICU1 functioning when its EF-hands are unoccupied by Ca2+ is poorly studied due to technical limitations. To overcome this …


Disrupted Ca2+ Homeostasis And Immunodeficiency In Patients With Functional Ip3 Receptor Subtype 3 Defects, Julika Neumann, Erika Van Nieuwenhove, Lara E Terry, Frederik Staels, Taylor R Knebel, Kirsten Welkenhuyzen, Kourosh Ahmadzadeh, Mariah R Baker, Margaux Gerbaux, Mathijs Willemsen, John S Barber, Irina I Serysheva, Liesbeth De Waele, François Vermeulen, Susan Schlenner, Isabelle Meyts, David I Yule, Geert Bultynck, Rik Schrijvers, Stephanie Humblet-Baron, Adrian Liston Jan 2023

Disrupted Ca2+ Homeostasis And Immunodeficiency In Patients With Functional Ip3 Receptor Subtype 3 Defects, Julika Neumann, Erika Van Nieuwenhove, Lara E Terry, Frederik Staels, Taylor R Knebel, Kirsten Welkenhuyzen, Kourosh Ahmadzadeh, Mariah R Baker, Margaux Gerbaux, Mathijs Willemsen, John S Barber, Irina I Serysheva, Liesbeth De Waele, François Vermeulen, Susan Schlenner, Isabelle Meyts, David I Yule, Geert Bultynck, Rik Schrijvers, Stephanie Humblet-Baron, Adrian Liston

Journal Articles

Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 …


Capture At The Er-Mitochondrial Contacts Licenses Ip, Máté Katona, Ádám Bartók, Zuzana Nichtova, György Csordás, Elena Berezhnaya, David Weaver, Arijita Ghosh, Péter Várnai, David I. Yule, György Hajnóczky Nov 2022

Capture At The Er-Mitochondrial Contacts Licenses Ip, Máté Katona, Ádám Bartók, Zuzana Nichtova, György Csordás, Elena Berezhnaya, David Weaver, Arijita Ghosh, Péter Várnai, David I. Yule, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Endoplasmic reticulum-mitochondria contacts (ERMCs) are restructured in response to changes in cell state. While this restructuring has been implicated as a cause or consequence of pathology in numerous systems, the underlying molecular dynamics are poorly understood. Here, we show means to visualize the capture of motile IP3 receptors (IP3Rs) at ERMCs and document the immediate consequences for calcium signaling and metabolism. IP3Rs are of particular interest because their presence provides a scaffold for ERMCs that mediate local calcium signaling, and their function outside of ERMCs depends on their motility. Unexpectedly, in a cell model with little ERMC Ca2+ coupling, IP3Rs …


Functional Determination Of Calcium-Binding Sites Required For The Activation Of Inositol 1,4,5-Trisphosphate Receptors, Vikas Arige, Lara E Terry, Larry E Wagner, Sundeep Malik, Mariah R Baker, Guizhen Fan, Suresh K Joseph, Irina I Serysheva, David I Yule Sep 2022

Functional Determination Of Calcium-Binding Sites Required For The Activation Of Inositol 1,4,5-Trisphosphate Receptors, Vikas Arige, Lara E Terry, Larry E Wagner, Sundeep Malik, Mariah R Baker, Guizhen Fan, Suresh K Joseph, Irina I Serysheva, David I Yule

Journal Articles

Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ …


Dynamic S-Acylation Of The Er-Resident Protein Stromal Interaction Molecule 1 (Stim1) Is Required For Store-Operated Ca2+ Entry, Goutham Kodakandla, Savannah J West, Qiaochu Wang, Ritika Tewari, Michael X Zhu, Askar M Akimzhanov, Darren Boehning Sep 2022

Dynamic S-Acylation Of The Er-Resident Protein Stromal Interaction Molecule 1 (Stim1) Is Required For Store-Operated Ca2+ Entry, Goutham Kodakandla, Savannah J West, Qiaochu Wang, Ritika Tewari, Michael X Zhu, Askar M Akimzhanov, Darren Boehning

Journal Articles

Many cell surface stimuli cause calcium release from endoplasmic reticulum (ER) stores to regulate cellular physiology. Upon ER calcium store depletion, the ER-resident protein stromal interaction molecule 1 (STIM1) physically interacts with plasma membrane protein Orai1 to induce calcium release-activated calcium (CRAC) currents that conduct calcium influx from the extracellular milieu. Although the physiological relevance of this process is well established, the mechanism supporting the assembly of these proteins is incompletely understood. Earlier we demonstrated a previously unknown post-translational modification of Orai1 with long-chain fatty acids, known as S-acylation. We found that S-acylation of Orai1 is dynamically regulated in a …


Uncontrolled Mitochondrial Calcium Uptake Underlies The Pathogenesis Of Neurodegeneration In Micu1-Deficient Mice And Patients, Raghavendra Singh, Adam Bartok, Melanie Paillard, Ashley L. Tyburski, Melanie B Elliott, György Hajnóczky Mar 2022

Uncontrolled Mitochondrial Calcium Uptake Underlies The Pathogenesis Of Neurodegeneration In Micu1-Deficient Mice And Patients, Raghavendra Singh, Adam Bartok, Melanie Paillard, Ashley L. Tyburski, Melanie B Elliott, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Dysregulation of mitochondrial Ca2+ homeostasis has been linked to neurodegenerative diseases. Mitochondrial Ca2+ uptake is mediated via the calcium uniporter complex that is primarily regulated by MICU1, a Ca2+-sensing gatekeeper. Recently, human patients with MICU1 loss-of-function mutations were diagnosed with neuromuscular and cognitive impairments. While studies in patient-derived cells revealed altered mitochondrial calcium signaling, the neuronal pathogenesis was difficult to study. To fill this void, we created a neuron-specific MICU1-KO mouse model. These animals show progressive, abnormal motor and cognitive phenotypes likely caused by the degeneration of motor neurons in the spinal cord and the cortex. We found increased susceptibility …


Electrophysiological And Imaging Calcium Biomarkers Of Aging In Male And Female 5×Fad Mice, Adam O. Ghoweri, Lara Ouillette, Hilaree N. Frazier, Katie L. Anderson, Ruei-Lung Lin, John C. Gant, Rachel Parent, Shannon Moore, Geoffrey G. Murphy, Olivier Thibault Dec 2020

Electrophysiological And Imaging Calcium Biomarkers Of Aging In Male And Female 5×Fad Mice, Adam O. Ghoweri, Lara Ouillette, Hilaree N. Frazier, Katie L. Anderson, Ruei-Lung Lin, John C. Gant, Rachel Parent, Shannon Moore, Geoffrey G. Murphy, Olivier Thibault

Pharmacology and Nutritional Sciences Faculty Publications

BACKGROUND: In animal models and tissue preparations, calcium dyshomeostasis is a biomarker of aging and Alzheimer's disease that is associated with synaptic dysfunction, neuritic pruning, and dysregulated cellular processes. It is unclear, however, whether the onset of calcium dysregulation precedes, is concurrent with, or is the product of pathological cellular events (e.g., oxidation, amyloid-β production, and neuroinflammation). Further, neuronal calcium dysregulation is not always present in animal models of amyloidogenesis, questioning its reliability as a disease biomarker.

OBJECTIVE: Here, we directly tested for the presence of calcium dysregulation in dorsal hippocampal neurons in male and female 5×FAD mice on …


Alzheimer's And Amyloid Beta: Amyloidogenicity And Tauopathy Via Dyshomeostatic Interactions Of Amyloid Beta, Jordan Tillinghast Dec 2019

Alzheimer's And Amyloid Beta: Amyloidogenicity And Tauopathy Via Dyshomeostatic Interactions Of Amyloid Beta, Jordan Tillinghast

Senior Honors Theses

This paper reviews functions of Amyloid-β (Aβ) in healthy individuals compared to the consequences of aberrant Aβ in Alzheimer’s disease (AD). As extraneuronal Aβ accumulation and plaque formation are characteristics of AD, it is reasonable to infer a pivotal role for Aβ in AD pathogenesis. Establishing progress of the disease as well as the mechanism of neurodegeneration from AD have proven difficult (Selkoe, 1994). This thesis provides evidence suggesting the pathogenesis of AD is due to dysfunctional neuronal processes involving Aβ’s synaptic malfunction, abnormal interaction with tau, and disruption of neuronal homeostasis. Significant evidence demonstrates that AD symptoms are partially …


Abnormal Response Of Costal Chondrocytes To Acidosis In Patients With Chest Wall Deformity, A. Asmar, Iurii Semenov, R. Kelly Jr., Michael Stacey Jan 2019

Abnormal Response Of Costal Chondrocytes To Acidosis In Patients With Chest Wall Deformity, A. Asmar, Iurii Semenov, R. Kelly Jr., Michael Stacey

Bioelectrics Publications

Costal cartilage is much understudied compared to the load bearing cartilages. Abnormally grown costal cartilages are associated with the inherited chest wall deformities pectus excavatum and pectus carinatum resulting in sunken or pigeon chest respectively. A lack of understanding of the ultrastructural and molecular biology properties of costal cartilage is a major confounder in predicting causes and outcomes of these disorders. Due to the avascular nature of cartilage, chondrocytes metabolize glycolytically, producing an acidic environment. During physical activity hydrogen ions move within cartilage driven by compressive forces, thus at any one time, chondrocytes experience transient changes in pH. A variety …


Micu1 Interacts With The D-Ring Of The Mcu Pore To Control Its Ca2+ Flux And Sensitivity To Ru360, Melanie Paillard, György Csordás, Kai-Ting Huang, Peter Várnai, Suresh K. Joseph, György Hajnóczky Nov 2018

Micu1 Interacts With The D-Ring Of The Mcu Pore To Control Its Ca2+ Flux And Sensitivity To Ru360, Melanie Paillard, György Csordás, Kai-Ting Huang, Peter Várnai, Suresh K. Joseph, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Proper control of the mitochondrial Ca2+ uniporter’s pore (MCU) is required to allow Ca2+ dependent activation of oxidative metabolism and to avoid mitochondrial Ca2+ overload and cell death. The MCU’s gatekeeping and cooperative activation is mediated by the Ca2+ sensing MICU1 protein, which has been proposed to form dimeric complexes anchored to the EMRE scaffold of MCU. We unexpectedly find that MICU1 suppresses inhibition of MCU by ruthenium red/Ru360, which bind to MCU’s DIME motif, the selectivity filter. This led us to recognize in MICU1’s sequence, a putative DIME Interacting Domain (DID) which is required for …


Translational Evaluation Of Acid/Base And Electrolyte Alterations In Rodent Model Of Focal Ischemia, Sarah R. Martha, Lisa A. Collier, Stephanie M. Davis, Hilary A. Seifert, Christopher C. Leonardo, Craig T. Ajmo, Elspeth A. Foran, Justin F. Fraser, Keith R. Pennypacker Oct 2018

Translational Evaluation Of Acid/Base And Electrolyte Alterations In Rodent Model Of Focal Ischemia, Sarah R. Martha, Lisa A. Collier, Stephanie M. Davis, Hilary A. Seifert, Christopher C. Leonardo, Craig T. Ajmo, Elspeth A. Foran, Justin F. Fraser, Keith R. Pennypacker

Neurology Faculty Publications

BACKGROUND AND PURPOSE: Acid/base and electrolytes could provide clinically valuable information about cerebral infarct core and penumbra. We evaluated associations between acid/base and electrolyte changes and outcomes in 2 rat models of stroke, permanent, and transient middle cerebral artery occlusion.

METHODS: Three-month old Sprague-Dawley rats underwent permanent or transient middle cerebral artery occlusion. Pre- and post-middle cerebral artery occlusion venous samples for permanent and transient models provided pH, carbon dioxide, oxygen, glucose, and electrolyte values of ionized calcium, potassium, and sodium. Multiple regression determined predictors of infarct volume from these values, and Kaplan-Meier curve analyzed morality between permanent and transient …


Protection Effect Of Exogenous Fibroblast Growth Factor 21 On The Kidney Injury In Vascular Calcification Rats, Yu-Chen Shi, Wei-Wei Lu, Yue-Long Hou, Kun Fu, Feng Gan, Shu-Juan Cheng, Shao-Ping Wang, Yong-Fen Qi, Jing-Hua Liu Mar 2018

Protection Effect Of Exogenous Fibroblast Growth Factor 21 On The Kidney Injury In Vascular Calcification Rats, Yu-Chen Shi, Wei-Wei Lu, Yue-Long Hou, Kun Fu, Feng Gan, Shu-Juan Cheng, Shao-Ping Wang, Yong-Fen Qi, Jing-Hua Liu

Pharmacology and Nutritional Sciences Faculty Publications

Background: Chronic kidney disease (CKD) is closely related to the cardiovascular events in vascular calcification (VC). However, little has known about the characteristics of kidney injury caused by VC. Fibroblast growth factor 21 (FGF21) is an endocrine factor, which takes part in various metabolic actions with the potential to alleviate metabolic disorder diseases. Even FGF21 has been regarded as a biomarker in CKD, the role of FGF21 in CKD remains unclear. Therefore, in this study, we evaluate the FGF21 on the kidney injury in VC rats.

Methods: The male Sprague-Dawley rats were divided into three groups: (1) control group, (2) …


Fk506-Binding Protein 12.6/1b, A Negative Regulator Of [Ca2+], Rescues Memory And Restores Genomic Regulation In The Hippocampus Of Aging Rats, John C. Gant, Eric M. Blalock, Kuey-Chu Chen, Inga Kadish, Olivier Thibault, Nada M. Porter, Philip W. Landfield Jan 2018

Fk506-Binding Protein 12.6/1b, A Negative Regulator Of [Ca2+], Rescues Memory And Restores Genomic Regulation In The Hippocampus Of Aging Rats, John C. Gant, Eric M. Blalock, Kuey-Chu Chen, Inga Kadish, Olivier Thibault, Nada M. Porter, Philip W. Landfield

Pharmacology and Nutritional Sciences Faculty Publications

Hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of ryanodine receptor Ca2+ release, reverses aging-induced memory impairment and neuronal Ca2+ dysregulation. Here, we tested the hypothesis that FKBP1b also can protect downstream transcriptional networks from aging-induced dysregulation. We gave hippocampal microinjections of FKBP1b-expressing viral vector to male rats at either 13 months of age (long-term, LT) or 19 months of age (short-term, ST) and tested memory performance in the Morris water maze at 21 months of age. Aged rats treated ST or LT with FKBP1b substantially outperformed age-matched vector controls and performed similarly …


Ros Control Mitochondrial Motility Through P38 And The Motor Adaptor Miro/Trak., Valentina Debattisti, Akos A. Gerencser, Masao Saotome, Sudipto Das, György Hajnóczky Nov 2017

Ros Control Mitochondrial Motility Through P38 And The Motor Adaptor Miro/Trak., Valentina Debattisti, Akos A. Gerencser, Masao Saotome, Sudipto Das, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Mitochondrial distribution and motility are recognized as central to many cellular functions, but their regulation by signaling mechanisms remains to be elucidated. Here, we report that reactive oxygen species (ROS), either derived from an extracellular source or intracellularly generated, control mitochondrial distribution and function by dose-dependently, specifically, and reversibly decreasing mitochondrial motility in both rat hippocampal primary cultured neurons and cell lines. ROS decrease motility independently of cytoplasmic [Ca2+], mitochondrial membrane potential, or permeability transition pore opening, known effectors of oxidative stress. However, multiple lines of genetic and pharmacological evidence support that a ROS-activated mitogen-activated protein kinase (MAPK), p38α, is …


Lactose Intolerance: An Overview Of The Facts And Their Implications, Noelle M. Yeo Mar 2017

Lactose Intolerance: An Overview Of The Facts And Their Implications, Noelle M. Yeo

Honors Theses

Lactose intolerance is often blamed for the symptoms such as bloating, diarrhea, gas, abdominal pain, and nausea, that ail many people. Patients often do not seek proper diagnosis from a physician and create their own treatment plans, severely restricting lactose intake, without professional guidance. Even those who do seek the care of a physician find that diagnosis is complicated by less-than ideal testing and confusion due to the symptoms common to many other conditions. The misconceptions and inability to confirm a diagnosis of lactose intolerance can cause nutrient deficiencies in these patients, as well as begin a pattern of unnecessary …


Role Of Fgf23 In Pediatric Hypercalciuria., Maria Goretti Moreira Guimarães Penido, Marcelo De Sousa Tavares, Uri S. Alon Jan 2017

Role Of Fgf23 In Pediatric Hypercalciuria., Maria Goretti Moreira Guimarães Penido, Marcelo De Sousa Tavares, Uri S. Alon

Manuscripts, Articles, Book Chapters and Other Papers

Background: This study explored the possible role of FGF23 in pediatric hypercalciuria.

Methods: Plasma FGF23 was measured in 29 controls and 58 children and adolescents with hypercalciuria: 24 before treatment (Pre-Treated) and 34 after 6 months of treatment (Treated). Hypercalciuric patients also measured serum PTH hormone, 25(OH)vitD, phosphate, calcium, creatinine, and 24 h urine calcium, phosphate, and creatinine.

Results: There were no differences in age, gender, ethnicity, or body mass index either between controls and patients, or between Pre-Treated and Treated patients. Median plasma FGF23 in controls was 72 compared with all patients, 58 RU/mL (p = 0.0019). However, …


Lifestyle And Other Factors Explain One-Half Of The Variability In The Serum 25-Hydroxyvitamin D Response To Cholecalciferol Supplementation In Healthy Adults, Judy R. Rees, Leila A. Mott, Elizabeth L. Barry, John A. Baron Sep 2016

Lifestyle And Other Factors Explain One-Half Of The Variability In The Serum 25-Hydroxyvitamin D Response To Cholecalciferol Supplementation In Healthy Adults, Judy R. Rees, Leila A. Mott, Elizabeth L. Barry, John A. Baron

Dartmouth Scholarship

Background: Many factors have been associated with serum 25-hydroxyvitamin D [25(OH)D] concentrations in observational studies, with variable consistency. However, less information is available on factors affecting the magnitude of changes in serum 25(OH)D resulting from vitamin D supplementation. Objective: This study aimed to identify factors associated with the serum 25(OH)D response to supplementation with 1000 IU cholecalciferol/d during the first year of a large, multicenter, randomized, placebo-controlled colorectal adenoma chemoprevention trial. Methods: Eligible older adults who were not vitamin D–deficient [serum 25(OH)D12 ng/mL] were randomly assigned in a modified 2 3 2 factorial design to 1 of 4 groups: daily …


Vitamin D Supplementation: Preventing Fractures, Courtney L. Carn, Michael S. Doherty May 2016

Vitamin D Supplementation: Preventing Fractures, Courtney L. Carn, Michael S. Doherty

Physician Assistant Capstones, 2016 to 2019

Objective: To assess the ability of vitamin D supplementation in preventing musculoskeletal fractures. Methods: Systematic literature review using Google Scholar search terms “vitamin D supplementation” and “preventing hip fractures” from 2006-2015. Only RCTs, meta-analysis, and clinical guidelines were included. Results: Our search resulted in one meta-analysis and two randomized controlled trials. Conclusion: The summation of our investigation into vitamin D deficiency and the presence of musculoskeletal fractures has proven to be relatively inconclusive. The resulting data from our three studies did not provide any definitive proof that improved vitamin D levels correlates with better bone health.


Blockade Of Astrocytic Calcineurin/Nfat Signaling Helps To Normalize Hippocampal Synaptic Function And Plasticity In A Rat Model Of Traumatic Brain Injury, Jennifer L. Furman, Pradoldej Sompol, Susan D. Kraner, Melanie M. Pleiss, Esther J. Putman, Jacob Dunkerson, Hafiz Mohmmad Abdul, Kelly N. Roberts, Stephen William Scheff, Christopher M. Norris Feb 2016

Blockade Of Astrocytic Calcineurin/Nfat Signaling Helps To Normalize Hippocampal Synaptic Function And Plasticity In A Rat Model Of Traumatic Brain Injury, Jennifer L. Furman, Pradoldej Sompol, Susan D. Kraner, Melanie M. Pleiss, Esther J. Putman, Jacob Dunkerson, Hafiz Mohmmad Abdul, Kelly N. Roberts, Stephen William Scheff, Christopher M. Norris

Pharmacology and Nutritional Sciences Faculty Publications

Increasing evidence suggests that the calcineurin (CN)-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) mediates deleterious effects of astrocytes in progressive neurodegenerative conditions. However, the impact of astrocytic CN/NFAT signaling on neural function/recovery after acute injury has not been investigated extensively. Using a controlled cortical impact (CCI) procedure in rats, we show that traumatic brain injury is associated with an increase in the activities of NFATs 1 and 4 in the hippocampus at 7 d after injury. NFAT4, but not NFAT1, exhibited extensive labeling in astrocytes and was found throughout the axon/dendrite layers of CA1 and the dentate …


Pharmacological Blockade Of The Calcium Plateau Provides Neuroprotection Following Organophosphate Paraoxon Induced Status Epilepticus In Rats, Laxmikant S. Deshpande, Robert E. Blair, Beverly A. Huang, Kristin F. Phillips, Robert J. Delorenzo Jan 2016

Pharmacological Blockade Of The Calcium Plateau Provides Neuroprotection Following Organophosphate Paraoxon Induced Status Epilepticus In Rats, Laxmikant S. Deshpande, Robert E. Blair, Beverly A. Huang, Kristin F. Phillips, Robert J. Delorenzo

Neurology Publications

Organophosphate (OP) compounds which include nerve agents and pesticides are considered chemical threat agents. Currently approved antidotes are crucial in limiting OP mediated acute mortality. However, survivors of lethal OP exposure exhibit delayed neuronal injury and chronic behavioral morbidities. In this study, we investigated neuroprotective capabilities of dantrolene and carisbamate in a rat survival model of paraoxon (POX) induced status epilepticus (SE). Significant elevations in hippocampal calcium levels were observed 48-h post POX SE survival, and treatment with dantrolene (10 mg/kg, i.m.) and carisbamate (90 mg/kg, i.m.) lowered these protracted calcium elevations. POX SE induced delayed neuronal injury …


Identification And Characterization Of The Interaction Site Between Cflipl And Calmodulin, Gabriel Gaidos, Alexandra E. Panaitiu, Bingqian Guo, Maria Pellegrini, Dale F. Mierke Nov 2015

Identification And Characterization Of The Interaction Site Between Cflipl And Calmodulin, Gabriel Gaidos, Alexandra E. Panaitiu, Bingqian Guo, Maria Pellegrini, Dale F. Mierke

Dartmouth Scholarship

Overexpression of the cellular FLICE-like inhibitory protein (cFLIP) has been reported in a number of tumor types. As an inactive procaspase-8 homologue, cFLIP is recruited to the intracellular assembly known as the Death Inducing Signaling Complex (DISC) where it inhibits apoptosis, leading to cancer cell proliferation. Here we characterize the molecular details of the interaction between cFLIPL and calmodulin, a ubiquitous calcium sensing protein. By expressing the individual domains of cFLIPL, we demonstrate that the interaction with calmodulin is mediated by the N-terminal death effector domain (DED1) of cFLIPL. Additionally, we mapped the interaction to …


Reversal Of Aging-Related Neuronal Ca2+ Dysregulation And Cognitive Impairment By Delivery Of A Transgene Encoding Fk506-Binding Protein 12.6/1b To The Hippocampus, John C. Gant, Kuey-Chu Chen, Inga Kadish, Eric M. Blalock, Olivier Thibault, Nada M. Porter, Philip W. Landfield Jul 2015

Reversal Of Aging-Related Neuronal Ca2+ Dysregulation And Cognitive Impairment By Delivery Of A Transgene Encoding Fk506-Binding Protein 12.6/1b To The Hippocampus, John C. Gant, Kuey-Chu Chen, Inga Kadish, Eric M. Blalock, Olivier Thibault, Nada M. Porter, Philip W. Landfield

Pharmacology and Nutritional Sciences Faculty Publications

Brain Ca(2+) regulatory processes are altered during aging, disrupting neuronal, and cognitive functions. In hippocampal pyramidal neurons, the Ca(2+)-dependent slow afterhyperpolarization (sAHP) exhibits an increase with aging, which correlates with memory impairment. The increased sAHP results from elevated L-type Ca(2+) channel activity and ryanodine receptor (RyR)-mediated Ca(2+) release, but underlying molecular mechanisms are poorly understood. Previously, we found that expression of the gene encoding FK506-binding protein 12.6/1b (FKBP1b), a small immunophilin that stabilizes RyR-mediated Ca(2+) release in cardiomyocytes, declines in hippocampus of aged rats and Alzheimer's disease subjects. Additionally, knockdown/disruption of hippocampal FKBP1b in young rats augments neuronal Ca(2+) responses. …


Mitochondrial Ca(2+) Uptake By The Voltage-Dependent Anion Channel 2 Regulates Cardiac Rhythmicity., Hirohito Shimizu, Johann Schredelseker, Jie Huang, Kui Lu, Shamim Naghdi, Fei Lu, Sarah Franklin, Hannah Dg Fiji, Kevin Wang, Huanqi Zhu, Cheng Tian, Billy Lin, Haruko Nakano, Amy Ehrlich, Junichi Nakai, Adam Z Stieg, James K Gimzewski, Atsushi Nakano, Joshua I. Goldhaber, Thomas M. Vondriska, György Hajnóczky, Ohyun Kwon, Jau-Nian Chen Jan 2015

Mitochondrial Ca(2+) Uptake By The Voltage-Dependent Anion Channel 2 Regulates Cardiac Rhythmicity., Hirohito Shimizu, Johann Schredelseker, Jie Huang, Kui Lu, Shamim Naghdi, Fei Lu, Sarah Franklin, Hannah Dg Fiji, Kevin Wang, Huanqi Zhu, Cheng Tian, Billy Lin, Haruko Nakano, Amy Ehrlich, Junichi Nakai, Adam Z Stieg, James K Gimzewski, Atsushi Nakano, Joshua I. Goldhaber, Thomas M. Vondriska, György Hajnóczky, Ohyun Kwon, Jau-Nian Chen

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Tightly regulated Ca(2+) homeostasis is a prerequisite for proper cardiac function. To dissect the regulatory network of cardiac Ca(2+) handling, we performed a chemical suppressor screen on zebrafish tremblor embryos, which suffer from Ca(2+) extrusion defects. Efsevin was identified based on its potent activity to restore coordinated contractions in tremblor. We show that efsevin binds to VDAC2, potentiates mitochondrial Ca(2+) uptake and accelerates the transfer of Ca(2+) from intracellular stores into mitochondria. In cardiomyocytes, efsevin restricts the temporal and spatial boundaries of Ca(2+) sparks and thereby inhibits Ca(2+) overload-induced erratic Ca(2+) waves and irregular contractions. We further show that overexpression …


Cardioprotection By Controlling Hyperamylinemia In A "Humanized" Diabetic Rat Model, Sanda Despa, Savita Sharma, Todd R. Harris, Hua Dong, Ning Li, Nipavan Chiamvimonvat, Heinrich Taegtmeyer, Kenneth B. Margulies, Bruce D. Hammock, Florin Despa Aug 2014

Cardioprotection By Controlling Hyperamylinemia In A "Humanized" Diabetic Rat Model, Sanda Despa, Savita Sharma, Todd R. Harris, Hua Dong, Ning Li, Nipavan Chiamvimonvat, Heinrich Taegtmeyer, Kenneth B. Margulies, Bruce D. Hammock, Florin Despa

Pharmacology and Nutritional Sciences Faculty Publications

BACKGROUND: Chronic hypersecretion of the pancreatic hormone amylin is common in humans with obesity or prediabetic insulin resistance and induces amylin aggregation and proteotoxicity in the pancreas. We recently showed that hyperamylinemia also affects the cardiovascular system. Here, we investigated whether amylin aggregates interact directly with cardiac myocytes and whether controlling hyperamylinemia protects the heart.

METHODS AND RESULTS: By Western blot, we found abundant amylin aggregates in lysates of cardiac myocytes from obese patients, but not in controls. Aggregated amylin was elevated in failing hearts, suggesting a role in myocyte injury. Using rats overexpressing human amylin in the pancreas (HIP …


Lapg, Required For Modulating Biofilm Formation By Pseudomonas Fluorescens Pf0-1, Is A Calcium-Dependent Protease, Chelsea D. Boyd, Debashree Chatterjee, Holger Sondermann, George A. O'Toole Jun 2012

Lapg, Required For Modulating Biofilm Formation By Pseudomonas Fluorescens Pf0-1, Is A Calcium-Dependent Protease, Chelsea D. Boyd, Debashree Chatterjee, Holger Sondermann, George A. O'Toole

Dartmouth Scholarship

Biofilm formation by Pseudomonas fluorescens Pf0-1 requires the cell surface adhesin LapA. We previously reported that LapG, a periplasmic cysteine protease of P. fluorescens, cleaves the N terminus of LapA, thus releasing this adhesin from the cell surface and resulting in loss of the ability to make a biofilm. The activity of LapG is regulated by the inner membrane-localized cyclic-di-GMP receptor LapD via direct protein-protein interactions. Here we present chelation and metal add-back studies demonstrating that calcium availability regulates biofilm formation by P. fluorescens Pf0-1. The determination that LapG is a calcium-dependent protease, based on in vivo and in vitro …


Perspectives On: Sgp Symposium On Mitochondrial Physiology And Medicine: Molecular Identities Of Mitochondrial Ca2+ Influx Mechanism: Updated Passwords For Accessing Mitochondrial Ca2+-Linked Health And Disease., Jin O-Uchi, Shi Pan, Shey-Shing Sheu Jun 2012

Perspectives On: Sgp Symposium On Mitochondrial Physiology And Medicine: Molecular Identities Of Mitochondrial Ca2+ Influx Mechanism: Updated Passwords For Accessing Mitochondrial Ca2+-Linked Health And Disease., Jin O-Uchi, Shi Pan, Shey-Shing Sheu

Center for Translational Medicine Faculty Papers

No abstract provided.