Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Sciences

Molecular And Genetic Studies Of Robo2 Transcriptional Regulation In The Central Nervous System Of Drosophila Melanogaster, Muna Abdal Rahim Abdal Rhida May 2021

Molecular And Genetic Studies Of Robo2 Transcriptional Regulation In The Central Nervous System Of Drosophila Melanogaster, Muna Abdal Rahim Abdal Rhida

Graduate Theses and Dissertations

Drosophila Robo2 axon guidance receptor is a member of the evolutionarily conserved Roundabout (Robo) protein family that is involved in directing axons that cross the midline to the other side of the animal body. Robo2 roles mainly depend on two factors: The functional domains of the Robo2 protein, which is extensively studied, and the dynamic transcription of robo2 in various subsets of cells throughout embryogenesis which is not fully understood. Thus, knowing robo2 enhancers that transcriptionally regulate robo2 during embryogenesis is significant. To investigate robo2 potential enhancers, we screened 17 transgenic lines of Drosophila that were generated by Janelia Research …


In Vivo Structure-Function Analysis Of Drosophila Robo1, An Axon Guidance Receptor Critical For Midline Repulsive Signaling In The Embryonic Central Nervous System, Haley Brown Jan 2018

In Vivo Structure-Function Analysis Of Drosophila Robo1, An Axon Guidance Receptor Critical For Midline Repulsive Signaling In The Embryonic Central Nervous System, Haley Brown

Graduate Theses and Dissertations

The repellant ligand Slit and its Roundabout (Robo) family receptors regulate many aspects of axon guidance in bilaterians, including midline crossing of axons during development of the embryonic CNS. Slit proteins are produced by midline cells and signal through Robo receptors expressed on the surface of axonal growth cones to repel axons from the midline. Disruption of Slit-Robo signaling causes ectopic midline crossing phenotypes in the CNS of a broad range of animals, including insects and vertebrates.

Drosophila Robo1 has a conserved ectodomain structure of five immunoglobulin-like (Ig) domains plus three fibronectin (FN) repeats. By utilizing a genomic rescue construct …