Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Sciences

Human-Like Nsg Mouse Glycoproteins Sialylation Pattern Changes The Phenotype Of Human Lymphocytes And Sensitivity To Hiv-1 Infection, Raghubendra S. Dagur, Amanda Branch-Woods, Saumi Mathews, Poonam S. Joshi, Rolen M. Quadros, Donald W. Harms, Yan Cheng, Shana M. Miles, Samuel J. Pirruccello, Channabasavaiah B. Gurumurthy, Santhi Gorantla, Larisa Y. Poluektova Jan 2019

Human-Like Nsg Mouse Glycoproteins Sialylation Pattern Changes The Phenotype Of Human Lymphocytes And Sensitivity To Hiv-1 Infection, Raghubendra S. Dagur, Amanda Branch-Woods, Saumi Mathews, Poonam S. Joshi, Rolen M. Quadros, Donald W. Harms, Yan Cheng, Shana M. Miles, Samuel J. Pirruccello, Channabasavaiah B. Gurumurthy, Santhi Gorantla, Larisa Y. Poluektova

Journal Articles: Munroe-Meyer Institute

BACKGROUND: The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins' chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known.

RESULTS: We mutated mouse …


Precise And Efficient Nucleotide Substitution Near Genomic Nick Via Noncanonical Homology-Directed Repair, Kazuhiro Nakajima, Yue Zhou, Akiko Tomita, Yoshihiro Hirade, Channabasavaiah B. Gurumurthy, Shinichiro Nakada Jan 2018

Precise And Efficient Nucleotide Substitution Near Genomic Nick Via Noncanonical Homology-Directed Repair, Kazuhiro Nakajima, Yue Zhou, Akiko Tomita, Yoshihiro Hirade, Channabasavaiah B. Gurumurthy, Shinichiro Nakada

Journal Articles: Munroe-Meyer Institute

CRISPR/Cas9, which generates DNA double-strand breaks (DSBs) at target loci, is a powerful tool for editing genomes when codelivered with a donor DNA template. However, DSBs, which are the most deleterious type of DNA damage, often result in unintended nucleotide insertions/deletions (indels) via mutagenic nonhomologous end joining. We developed a strategy for precise gene editing that does not generate DSBs. We show that a combination of single nicks in the target gene and donor plasmid (SNGD) using Cas9D10A nickase promotes efficient nucleotide substitution by gene editing. Nicking the target gene alone did not facilitate efficient gene editing. However, an additional …


Easi-Crispr: A Robust Method For One-Step Generation Of Mice Carrying Conditional And Insertion Alleles Using Long Ssdna Donors And Crispr Ribonucleoproteins., Rolen M Quadros, Hiromi Miura, Donald W Harms, Hisako Akatsuka, Takehito Sato, Tomomi Aida, Ronald Redder, Guy P Richardson, Yutaka Inagaki, Daisuke Sakai, Shannon M Buckley, Parthasarathy Seshacharyulu, Surinder K Batra, Mark A Behlke, Sarah A Zeiner, Ashley M Jacobi, Yayoi Izu, Wallace B Thoreson, Lisa D Urness, Suzanne L Mansour, Masato Ohtsuka, Channabasavaiah B Gurumurthy May 2017

Easi-Crispr: A Robust Method For One-Step Generation Of Mice Carrying Conditional And Insertion Alleles Using Long Ssdna Donors And Crispr Ribonucleoproteins., Rolen M Quadros, Hiromi Miura, Donald W Harms, Hisako Akatsuka, Takehito Sato, Tomomi Aida, Ronald Redder, Guy P Richardson, Yutaka Inagaki, Daisuke Sakai, Shannon M Buckley, Parthasarathy Seshacharyulu, Surinder K Batra, Mark A Behlke, Sarah A Zeiner, Ashley M Jacobi, Yayoi Izu, Wallace B Thoreson, Lisa D Urness, Suzanne L Mansour, Masato Ohtsuka, Channabasavaiah B Gurumurthy

Journal Articles: Munroe-Meyer Institute

BACKGROUND: Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. …


Motor-Skill Learning Is Dependent On Astrocytic Activity., Ragunathan Padmashri, Anand Suresh, Michael D. Boska, Anna Dunaevsky Jan 2015

Motor-Skill Learning Is Dependent On Astrocytic Activity., Ragunathan Padmashri, Anand Suresh, Michael D. Boska, Anna Dunaevsky

Journal Articles: Munroe-Meyer Institute

Motor-skill learning induces changes in synaptic structure and function in the primary motor cortex through the involvement of a long-term potentiation- (LTP-) like mechanism. Although there is evidence that calcium-dependent release of gliotransmitters by astrocytes plays an important role in synaptic transmission and plasticity, the role of astrocytes in motor-skill learning is not known. To test the hypothesis that astrocytic activity is necessary for motor-skill learning, we perturbed astrocytic function using pharmacological and genetic approaches. We find that perturbation of astrocytes either by selectively attenuating IP3R2 mediated astrocyte Ca(2+) signaling or using an astrocyte specific metabolic inhibitor fluorocitrate (FC) results …