Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medical Sciences

Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto Feb 2024

Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto

Dissertations, Theses, and Capstone Projects

Methamphetamine (METH) abuse remains a global health concern, with emerging evidence highlighting its genotoxic potential. In the central nervous system METH enters dopaminergic cells primarily through the dopamine transporter (DAT), which controls the dynamics of dopamine (DA) neurotransmission by driving the reuptake of extracellular DA into the presynaptic neuronal cell. Additional effects of METH on the storage of DA in synaptic vesicles lead to the dysregulated cytosolic accumulation of DA. Previous studies have shown that after METH disrupts intracellular vesicular stores of DA, the excess DA in the cytosol is rapidly oxidized. This generates an abundance of reactive oxygen species …


Predicting Synchronized Gene Coexpression Patterns From Fibration Symmetries In Gene Regulatory Networks In Bacteria, Ian Leifer, Mishael Sánchez‑Pérez, Cecilia Ishida, Hernán A. Makse Jul 2021

Predicting Synchronized Gene Coexpression Patterns From Fibration Symmetries In Gene Regulatory Networks In Bacteria, Ian Leifer, Mishael Sánchez‑Pérez, Cecilia Ishida, Hernán A. Makse

Publications and Research

Background: Gene regulatory networks coordinate the expression of genes across physiological states and ensure a synchronized expression of genes in cellular subsystems, critical for the coherent functioning of cells. Here we address the question whether it is possible to predict gene synchronization from network structure alone. We have recently shown that synchronized gene expression can be predicted from symmetries in the gene regulatory networks described by the concept of symmetry fibrations. We showed that symmetry fibrations partition the genes into groups called fibers based on the symmetries of their ’input trees’, the set of paths in the network through which …


A Peek Inside The Machines Of Bacterial Nucleotide Excision Repair, Thanyalak Kraithong, Silas Hartley, David Jeruzalmi, Danaya Pakotiprapha Jan 2021

A Peek Inside The Machines Of Bacterial Nucleotide Excision Repair, Thanyalak Kraithong, Silas Hartley, David Jeruzalmi, Danaya Pakotiprapha

Publications and Research

Double stranded DNA (dsDNA), the repository of genetic information in bacteria, archaea and eukaryotes, exhibits a surprising instability in the intracellular environment; this fragility is exacerbated by exogenous agents, such as ultraviolet radiation. To protect themselves against the severe consequences of DNA damage, cells have evolved at least six distinct DNA repair pathways. Here, we review recent key findings of studies aimed at understanding one of these pathways: bacterial nucleotide excision repair (NER). This pathway operates in two modes: a global genome repair (GGR) pathway and a pathway that closely interfaces with transcription by RNA polymerase called transcription-coupled repair (TCR). …


Epigenetic Targeting Of Mcl-1 Is Synthetically Lethal With Bcl-Xl/Bcl-2 Inhibition In Model Systems Of Glioblastoma, Enyuan Shang, Trang T. T. Nguyen, Chang Shu, Mike-Andrew Westhoff, Georg Karpel-Massler, Markus D. Siegelin Aug 2020

Epigenetic Targeting Of Mcl-1 Is Synthetically Lethal With Bcl-Xl/Bcl-2 Inhibition In Model Systems Of Glioblastoma, Enyuan Shang, Trang T. T. Nguyen, Chang Shu, Mike-Andrew Westhoff, Georg Karpel-Massler, Markus D. Siegelin

Publications and Research

Apoptotic resistance remains a hallmark of glioblastoma (GBM), the most common primary brain tumor in adults, and a better understanding of this process may result in more efficient treatments. By utilizing chromatin immunoprecipitation with next-generation sequencing (CHIP-seq), we discovered that GBMs harbor a super enhancer around the Mcl-1 locus, a gene that has been known to confer cell death resistance in GBM.We utilized THZ1, a known super-enhancer blocker, and BH3-mimetics, including ABT263, WEHI-539, and ABT199. Combined treatment with BH3-mimetics and THZ1 led to synergistic growth reduction in GBM models. Reduction in cellular viability was accompanied by significant cell death induction …


Eugenics In The 21st Century, Jessica Linn Chin Sep 2019

Eugenics In The 21st Century, Jessica Linn Chin

Dissertations, Theses, and Capstone Projects

Eugenics is the science of enhancing the human population through the management of breeding and hereditary traits. This thesis explores the history of eugenics and shows how eugenic practices continue in the 21st century with advancements in technology and positive eugenic goals that can result in adverse effects on the human body and society. When Sir Francis Galton coined the term eugenics in 1883, he intended to improve British society with the use of positive eugenics. Galton used positive eugenics to encourage people with good mental and physical qualities to produce more children. He avoided negative eugenics, which involved …


Caenorhabditis Elegans Dbl-1/Bmp Regulates Lipid Accumulation Via Interaction With Insulin Signaling, James F. Clark, Michael Meade, Gehan Ranepura, David H. Hall, Cathy Savage-Dunn Nov 2017

Caenorhabditis Elegans Dbl-1/Bmp Regulates Lipid Accumulation Via Interaction With Insulin Signaling, James F. Clark, Michael Meade, Gehan Ranepura, David H. Hall, Cathy Savage-Dunn

Publications and Research

Metabolic homeostasis is coordinately controlled by diverse inputs. Understanding these regulatory networks is vital to combating metabolic disorders. The nematode Caenorhabditis elegans has emerged as a powerful, genetically tractable model system for the discovery of lipid regulatory mechanisms. Here we introduce DBL-1, the C. elegans homolog of bone morphogenetic protein 2/4 (BMP2/4), as a significant regulator of lipid homeostasis. We used neutral lipid staining and a lipid droplet marker to demonstrate that both increases and decreases in DBL-1/BMP signaling result in reduced lipid stores and lipid droplet count. We find that lipid droplet size, however, correlates positively with the level …