Open Access. Powered by Scholars. Published by Universities.®

Child

Life Sciences

Articles 1 - 2 of 2

Full-Text Articles in Congenital, Hereditary, and Neonatal Diseases and Abnormalities

Techniques And Approaches To Genetic Analyses In Nephrological Disorders., Laurel K. Willig Mar 2016

Techniques And Approaches To Genetic Analyses In Nephrological Disorders., Laurel K. Willig

Manuscripts, Articles, Book Chapters and Other Papers

Inherited renal disease is a leading cause of morbidity and mortality in pediatric nephrology. High throughput advancements in genomics have led to greater understanding of the biologic underpinnings of these diseases. However, the underlying genetic changes explain only part of the molecular biology that contributes to disease manifestation and progression. Other omics technologies will provide a more complete picture of these cellular processes. This review discusses these omics technologies in the context of pediatric renal disease.


The Challenge Of Analyzing The Results Of Next-Generation Sequencing In Children., Isabelle Thiffault, John Lantos Jan 2016

The Challenge Of Analyzing The Results Of Next-Generation Sequencing In Children., Isabelle Thiffault, John Lantos

Manuscripts, Articles, Book Chapters and Other Papers

In recent years, next-generation sequencing technologies have revolutionized approaches to genetic studies. Whole-exome or whole-genome sequencing allows diagnoses in many patients who have complex phenotypes and unusual clinical presentations. As genomic and exomic testing expands in both the research and clinical settings, pediatricians will need to understand the technology of next-generation sequencing and the complexity of interpreting genomic variants relevant to patient phenotypic features. This article briefly explains the technology by which genomes are sequenced and discusses some of the complexity related to interpreting genomic variants. We conclude with some thoughts on the clinical applications of such testing.