Open Access. Powered by Scholars. Published by Universities.®

Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Diseases

Circulating Plasma Exosomal Proteins Of Either Shiv-Infected Rhesus Macaque Or Hiv-Infected Patient Indicates A Link To Neuropathogenesis, Partha K. Chandra, Stephen E. Braun, Sudipa Maity, Jorge A. Castorena-Gonzalez, Hogyoung Kim, Jeffrey G. Shaffer, Sinisa Cikic, Ibolya Rutkai, Jia Fan, Jessie J. Guidry, David K. Worthylake, Chenzhong Li, Asim B. Abdel-Mageed, David W. Busija Mar 2023

Circulating Plasma Exosomal Proteins Of Either Shiv-Infected Rhesus Macaque Or Hiv-Infected Patient Indicates A Link To Neuropathogenesis, Partha K. Chandra, Stephen E. Braun, Sudipa Maity, Jorge A. Castorena-Gonzalez, Hogyoung Kim, Jeffrey G. Shaffer, Sinisa Cikic, Ibolya Rutkai, Jia Fan, Jessie J. Guidry, David K. Worthylake, Chenzhong Li, Asim B. Abdel-Mageed, David W. Busija

School of Medicine Faculty Publications

Despite the suppression of human immunodeficiency virus (HIV) replication by combined antiretroviral therapy (cART), 50–60% of HIV-infected patients suffer from HIV-associated neurocognitive disorders (HAND). Studies are uncovering the role of extracellular vesicles (EVs), especially exosomes, in the central nervous system (CNS) due to HIV infection. We investigated links among circulating plasma exosomal (crExo) proteins and neuropathogenesis in simian/human immunodeficiency virus (SHIV)-infected rhesus macaques (RM) and HIV-infected and cART treated patients (Patient-Exo). Isolated EVs from SHIV-infected (SHIV-Exo) and uninfected (CTL-Exo) RM were predominantly exosomes (particle size < 150 nm). Proteomic analysis quantified 5654 proteins, of which 236 proteins (~4%) were significantly, differentially expressed (DE) between SHIV-/CTL-Exo. Interestingly, different CNS cell specific markers were abundantly expressed in crExo. Proteins involved in latent viral reactivation, neuroinflammation, neuropathology-associated interactive as well as signaling molecules were expressed at significantly higher levels in SHIV-Exo than CTL-Exo. However, proteins involved in mitochondrial biogenesis, ATP production, autophagy, endocytosis, exocytosis, and cytoskeleton organization were significantly less expressed in SHIV-Exo than CTL-Exo. Interestingly, proteins involved in oxidative stress, mitochondrial biogenesis, ATP production, and autophagy were significantly downregulated in primary human brain microvascular endothelial cells exposed with HIV+/cART+ Patient-Exo. We showed that Patient-Exo significantly increased blood–brain barrier permeability, possibly due to loss of platelet endothelial cell adhesion molecule-1 protein and actin cytoskeleton structure. Our novel findings suggest that circulating exosomal proteins expressed CNS cell markers—possibly associated with viral reactivation and neuropathogenesis—that may elucidate the etiology of HAND.


Attenuated Negative Feedback In Monocyte-Derived Macrophages From Persons Living With Hiv: A Role For Ikaros, Celeste Faia, Karlie Plaisance-Bonstaff, Cecilia Vittori, Dorota Wyczechowska, Adam Lassak, Mary Meyaski-Schluter, Krzysztof Reiss, Francesca Peruzzi Nov 2021

Attenuated Negative Feedback In Monocyte-Derived Macrophages From Persons Living With Hiv: A Role For Ikaros, Celeste Faia, Karlie Plaisance-Bonstaff, Cecilia Vittori, Dorota Wyczechowska, Adam Lassak, Mary Meyaski-Schluter, Krzysztof Reiss, Francesca Peruzzi

School of Medicine Faculty Publications

Persons living with HIV (PLWH) are at higher risk of developing secondary illnesses than their uninfected counterparts, suggestive of a dysfunctional immune system in these individuals. Upon exposure to pathogens, monocytes undergo epigenetic remodeling that results in either a trained or a tolerant phenotype, characterized by hyper-responsiveness or hypo-responsiveness to secondary stimuli, respectively. We utilized CD14+ monocytes from virally suppressed PLWH and healthy controls for in vitro analysis following polarization of these cells toward a pro-inflammatory monocyte-derived macrophage (MDM) phenotype. We found that in PLWH-derived MDMs, pro-inflammatory signals (TNFA, IL6, IL1B, miR-155-5p, and IDO1) dominate over negative feedback signals (NCOR2, …