Open Access. Powered by Scholars. Published by Universities.®

Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Diseases

Selective Anticancer Activity Of Hydroxyapatite/Chitosan-Poly(D,L)-Lactide-Co-Glycolide Particles Loaded With An Androstane-Based Cancer Inhibitor, Nenad Ignjatović, Katarina M. Penov-Gaši, Victoria M. Wu, Jovana J. Ajduković, Vesna V. Kojić, Dana Vasiljević-Radović, Maja Kuzmanović, Vuk Uskoković, Dragab Uskoković Sep 2016

Selective Anticancer Activity Of Hydroxyapatite/Chitosan-Poly(D,L)-Lactide-Co-Glycolide Particles Loaded With An Androstane-Based Cancer Inhibitor, Nenad Ignjatović, Katarina M. Penov-Gaši, Victoria M. Wu, Jovana J. Ajduković, Vesna V. Kojić, Dana Vasiljević-Radović, Maja Kuzmanović, Vuk Uskoković, Dragab Uskoković

Pharmacy Faculty Articles and Research

In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the …


Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review …