Open Access. Powered by Scholars. Published by Universities.®

Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Diseases

The Impact Of Muscular Strength On Cardiovascular Disease Risk Factors, Joel Ernest Harden Dec 2021

The Impact Of Muscular Strength On Cardiovascular Disease Risk Factors, Joel Ernest Harden

Human Movement Sciences & Special Education Theses & Dissertations

The purpose of this study was to determine the associations between isokinetic leg muscular strength and cardiovascular disease (CVD) risk factor characterizations in Americans aged 50 and older. Using a publicly available dataset from the National Health and Nutrition Examination Survey (NHANES), a secondary analysis was conducted on participants (males ≥50 yrs; females ≥55 yrs; N=10,858) pooled from 1999 to 2002. CVD risk factors were determined using the American College of Sports Medicine (ACSM) cutoff values, with all nine ACSM risk factors analyzed. CVD risk factor characterization was determined by creating CVD risk factor profiles (i.e., the total number of …


Assessing The Structure-Function Relationships Of The Apolipoprotein(A) Kringle Iv Sub-Type 10 Domain, Matthew J. Borrelli Aug 2019

Assessing The Structure-Function Relationships Of The Apolipoprotein(A) Kringle Iv Sub-Type 10 Domain, Matthew J. Borrelli

Electronic Thesis and Dissertation Repository

Elevated plasma lipoprotein(a) (Lp(a)) is the most prevalent heritable risk factor in the development of cardiovascular disease. The apolipoprotein(a) (apo(a)) component of Lp(a) is strongly implicated in the pathogenicity of Lp(a). It is hypothesized that the inflammatory potential of Lp(a)/apo(a) is mediated by the lysine binding ability of the apo(a) kringle IV10 (KIV10) domain, along with its covalently bound oxidized phospholipid (oxPL). Using targeted mutagenesis, two novel null alleles for the LPA gene that generate non-secretable apo(a) species have been identified, resulting from amino acid substitutions in the KIV10 domain. A potential mechanism by which KIV10 oxPL modification is enriched …


Adropin: An Endocrine Link Between The Biological Clock And Cholesterol Homeostasis, Sarbani Ghoshal, Joseph R. Stevens, Cyrielle Billon, Clemence Girardet, Sadichha Sitaula, Arthur S. Leon, D.C. Rao, James S. Skinner, Tuomo Rankinen, Claude Bouchard, Marinelle V. Nuñez, Kimber L. Stanhope, Deborah A. Howatt, Alan Daugherty, Jinsong Zhang, Matthew Schuelke, Edward P. Weiss, Alisha R. Coffey, Brian J. Bennett, Praveen Sethupathy, Thomas P. Burris, Peter J. Havel, Andrew A. Butler Feb 2018

Adropin: An Endocrine Link Between The Biological Clock And Cholesterol Homeostasis, Sarbani Ghoshal, Joseph R. Stevens, Cyrielle Billon, Clemence Girardet, Sadichha Sitaula, Arthur S. Leon, D.C. Rao, James S. Skinner, Tuomo Rankinen, Claude Bouchard, Marinelle V. Nuñez, Kimber L. Stanhope, Deborah A. Howatt, Alan Daugherty, Jinsong Zhang, Matthew Schuelke, Edward P. Weiss, Alisha R. Coffey, Brian J. Bennett, Praveen Sethupathy, Thomas P. Burris, Peter J. Havel, Andrew A. Butler

Physiology Faculty Publications

Objective

Identify determinants of plasma adropin concentrations, a secreted peptide translated from the Energy Homeostasis Associated (ENHO) gene linked to metabolic control and vascular function.

Methods

Associations between plasma adropin concentrations, demographics (sex, age, BMI) and circulating biomarkers of lipid and glucose metabolism were assessed in plasma obtained after an overnight fast in humans. The regulation of adropin expression was then assessed in silico, in cultured human cells, and in animal models.

Results

In humans, plasma adropin concentrations are inversely related to atherogenic LDL-cholesterol (LDL-C) levels in men (n = 349), but not in women (n = …