Open Access. Powered by Scholars. Published by Universities.®

Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Diseases

The Janus Kinase 1 Is Critical For Pancreatic Cancer Initiation And Progression, Hridaya Shrestha, Patrick Rädler, Rayane Dennaoui, Madison Wicker, Nirakar Rajbhandari, Yunguang Sun, Amy Peck, Kerry Vistisen, Aleata Triplett, Rafic Beydoun, Esta Sterneck, Dieter Saur, Hallgeir Rui, Kay-Uwe Wagner May 2024

The Janus Kinase 1 Is Critical For Pancreatic Cancer Initiation And Progression, Hridaya Shrestha, Patrick Rädler, Rayane Dennaoui, Madison Wicker, Nirakar Rajbhandari, Yunguang Sun, Amy Peck, Kerry Vistisen, Aleata Triplett, Rafic Beydoun, Esta Sterneck, Dieter Saur, Hallgeir Rui, Kay-Uwe Wagner

Department of Pharmacology, Physiology, and Cancer Biology Faculty Papers

Interleukin-6 (IL-6)-class inflammatory cytokines signal through the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) pathway and promote the development of pancreatic ductal adenocarcinoma (PDAC); however, the functions of specific intracellular signaling mediators in this process are less well defined. Using a ligand-controlled and pancreas-specific knockout in adult mice, we demonstrate in this study that JAK1 deficiency prevents the formation of KRASG12D-induced pancreatic tumors, and we establish that JAK1 is essential for the constitutive activation of STAT3, whose activation is a prominent characteristic of PDAC. We identify CCAAT/enhancer binding protein δ (C/EBPδ) as a biologically relevant …


Stat5 Induces Androgen Receptor (Ar) Gene Transcription In Prostate Cancer And Offers A Druggable Pathway To Target Ar Signaling, Cristina Maranto, Lavannya Sabharwal, Vindhya Udhane, Samuel P. Pitzen, Braedan Mccluskey, Songyan Qi, Christine O'Connor, Savita Devi, Scott Johnson, Kenneth Jacobsohn, Anjishnu Banerjee, Kenneth A. Iczkowski, Liang Wang, Scott M. Dehm, Marja T. Nevalainen Feb 2024

Stat5 Induces Androgen Receptor (Ar) Gene Transcription In Prostate Cancer And Offers A Druggable Pathway To Target Ar Signaling, Cristina Maranto, Lavannya Sabharwal, Vindhya Udhane, Samuel P. Pitzen, Braedan Mccluskey, Songyan Qi, Christine O'Connor, Savita Devi, Scott Johnson, Kenneth Jacobsohn, Anjishnu Banerjee, Kenneth A. Iczkowski, Liang Wang, Scott M. Dehm, Marja T. Nevalainen

Department of Pharmacology, Physiology, and Cancer Biology Faculty Papers

Androgen receptor (AR) drives prostate cancer (PC) growth and progression, and targeting AR signaling is the mainstay of pharmacological therapies for PC. Resistance develops relatively fast as a result of refueled AR activity. A major gap in the field is the lack of understanding of targetable mechanisms that induce persistent AR expression in castrate-resistant PC (CRPC). This study uncovers an unexpected function of active Stat5 signaling, a known promoter of PC growth and clinical progression, as a potent inducer of AR gene transcription. Stat5 suppression inhibited AR gene transcription in preclinical PC models and reduced the levels of wild-type, mutated, …


Scutellaria Baicalensis Enhances 5-Fluorouracil-Based Chemotherapy Via Inhibition Of Proliferative Signaling Pathways, Haizhou Liu, Hui Liu, Zhiyi Zhou, Jessica Chung, Guojing Zhang, Jin Chang, Robert A Parise, Edward Chu, John C Schmitz Jun 2023

Scutellaria Baicalensis Enhances 5-Fluorouracil-Based Chemotherapy Via Inhibition Of Proliferative Signaling Pathways, Haizhou Liu, Hui Liu, Zhiyi Zhou, Jessica Chung, Guojing Zhang, Jin Chang, Robert A Parise, Edward Chu, John C Schmitz

Abington Jefferson Health Papers

Fluoropyridine-based chemotherapy remains the most widely used treatment for colorectal cancer (CRC). In this study, we investigated the mechanism by which the natural product Scutellaria baicalensis (Huang Qin; HQ) and one of its main components baicalin enhanced 5-fluorouracil (5-FU) antitumor activity against CRC. Cell proliferation assays, cell cycle analysis, reverse-phase protein array (RPPA) analysis, immunoblot analysis, and qRT-PCR were performed to investigate the mechanism(s) of action of HQ and its active components on growth of CRC cells. HQ exhibited in vitro antiproliferative activity against drug resistant human CRC cells, against human and mouse CRC cells with different genetic backgrounds and …


Serpinb3 Drives Cancer Stem Cell Survival In Glioblastoma, Adam Lauko, Josephine Volovetz, Soumya M Turaga, Defne Bayik, Daniel J Silver, Kelly Mitchell, Erin E Mulkearns-Hubert, Dionysios C Watson, Kiran Desai, Manav Midha, Jing Hao, Kathleen Mccortney, Alicia Steffens, Ulhas Naik, Manmeet S Ahluwalia, Shideng Bao, Craig Horbinski, Jennifer S Yu, Justin D Lathia Sep 2022

Serpinb3 Drives Cancer Stem Cell Survival In Glioblastoma, Adam Lauko, Josephine Volovetz, Soumya M Turaga, Defne Bayik, Daniel J Silver, Kelly Mitchell, Erin E Mulkearns-Hubert, Dionysios C Watson, Kiran Desai, Manav Midha, Jing Hao, Kathleen Mccortney, Alicia Steffens, Ulhas Naik, Manmeet S Ahluwalia, Shideng Bao, Craig Horbinski, Jennifer S Yu, Justin D Lathia

Department of Medicine Faculty Papers

Despite therapeutic interventions for glioblastoma (GBM), cancer stem cells (CSCs) drive recurrence. The precise mechanisms underlying CSC resistance, namely inhibition of cell death, are unclear. We built on previous observations that the high cell surface expression of junctional adhesion molecule-A drives CSC maintenance and identified downstream signaling networks, including the cysteine protease inhibitor SerpinB3. Using genetic depletion approaches, we found that SerpinB3 is necessary for CSC maintenance, survival, and tumor growth, as well as CSC pathway activation. Knockdown of SerpinB3 also increased apoptosis and susceptibility to radiation therapy. SerpinB3 was essential to buffer cathepsin L-mediated cell death, which was enhanced …


The Mitochondrial Deoxyguanosine Kinase Is Required For Cancer Cell Stemness In Lung Adenocarcinoma, Shengchen Lin, Chongbiao Huang, Jianwei Sun, Oana Bollt, Xiuchao Wang, Eric Martine, Jiaxin Kang, Matthew D. Taylor, Bin Fang, Pankaj K. Singh, John Koomen, Jihui Hao, Shengyu Yang Jan 2019

The Mitochondrial Deoxyguanosine Kinase Is Required For Cancer Cell Stemness In Lung Adenocarcinoma, Shengchen Lin, Chongbiao Huang, Jianwei Sun, Oana Bollt, Xiuchao Wang, Eric Martine, Jiaxin Kang, Matthew D. Taylor, Bin Fang, Pankaj K. Singh, John Koomen, Jihui Hao, Shengyu Yang

Journal Articles: Eppley Institute

The mitochondrial deoxynucleotide triphosphate (dNTP) is maintained by the mitochondrial deoxynucleoside salvage pathway and dedicated for the mtDNA homeostasis, and the mitochondrial deoxyguanosine kinase (DGUOK) is a rate-limiting enzyme in this pathway. Here, we investigated the role of the DGUOK in the self-renewal of lung cancer stem-like cells (CSC). Our data support that DGUOK overexpression strongly correlates with cancer progression and patient survival. The depletion of DGUOK robustly inhibited lung adenocarcinoma tumor growth, metastasis, and CSC self-renewal. Mechanistically, DGUOK is required for the biogenesis of respiratory complex I and mitochondrial OXPHOS, which in turn regulates CSC self-renewal through AMPK-YAP1 signaling. …


Mitochondrial Superoxide Disrupts The Metabolic And Epigenetic Landscape Of Cd4, Cassandra M. Moshfegh, Christopher W. Collins, Venugopal Gunda, A. Vasanthakumar, J. Z. Cao, Pankaj K. Singh, L. A. Godley, Adam J. Case Jan 2019

Mitochondrial Superoxide Disrupts The Metabolic And Epigenetic Landscape Of Cd4, Cassandra M. Moshfegh, Christopher W. Collins, Venugopal Gunda, A. Vasanthakumar, J. Z. Cao, Pankaj K. Singh, L. A. Godley, Adam J. Case

Journal Articles: Eppley Institute

While the role of mitochondrial metabolism in controlling T-lymphocyte activation and function is becoming more clear, the specifics of how mitochondrial redox signaling contributes to T-lymphocyte regulation remains elusive. Here, we examined the global effects of elevated mitochondrial superoxide (O2-) on T-lymphocyte activation using a novel model of inducible manganese superoxide dismutase (MnSOD) knock-out. Loss of MnSOD led to specific increases in mitochondrial O2- with no evident changes in hydrogen peroxide (H2O2), peroxynitrite (ONOO-), or copper/zinc superoxide dismutase (CuZnSOD) levels. Unexpectedly, both mitochondrial and glycolytic metabolism showed significant reductions …


Tgfβ/Smad3 Regulates Proliferation And Apoptosis Through Irs-1 Inhibition In Colon Cancer Cells., Katie L. Bailey, Ekta Agarwal, Sanjib Chowdhury, Jiangtao Luo, Michael G. Brattain, Jennifer D. Black, J. Wang Apr 2017

Tgfβ/Smad3 Regulates Proliferation And Apoptosis Through Irs-1 Inhibition In Colon Cancer Cells., Katie L. Bailey, Ekta Agarwal, Sanjib Chowdhury, Jiangtao Luo, Michael G. Brattain, Jennifer D. Black, J. Wang

Journal Articles: Eppley Institute

In this study, we have uncovered a novel crosstalk between TGFβ and IGF-1R signaling pathways. We show for the first time that expression and activation of IRS-1, an IGF-1R adaptor protein, is decreased by TGFβ/Smad3 signaling. Loss or attenuation of TGFβ activation leads to elevated expression and phosphorylation of IRS-1 in colon cancer cells, resulting in enhanced cell proliferation, decreased apoptosis and increased tumor growth in vitro and in vivo. Downregulation of IRS-1 expression reversed Smad3 knockdown-mediated oncogenic phenotypes, indicating that TGFβ/Smad3 signaling inhibits cell proliferation and increases apoptosis at least partially through the inhibition of IRS-1 expression and activation. …


Natural Compounds Targeting Major Cell Signaling Pathways: A Novel Paradigm For Osteosarcoma Therapy., Pablo Angulo, Gaurav Kaushik, Dharmalingam Subramaniam, Prasad Dandawate, Kathleen Neville, Katherine Chastain, Shrikant Anant Jan 2017

Natural Compounds Targeting Major Cell Signaling Pathways: A Novel Paradigm For Osteosarcoma Therapy., Pablo Angulo, Gaurav Kaushik, Dharmalingam Subramaniam, Prasad Dandawate, Kathleen Neville, Katherine Chastain, Shrikant Anant

Manuscripts, Articles, Book Chapters and Other Papers

Osteosarcoma is the most common primary bone cancer affecting children and adolescents worldwide. Despite an incidence of three cases per million annually, it accounts for an inordinate amount of morbidity and mortality. While the use of chemotherapy (cisplatin, doxorubicin, and methotrexate) in the last century initially resulted in marginal improvement in survival over surgery alone, survival has not improved further in the past four decades. Patients with metastatic osteosarcoma have an especially poor prognosis, with only 30% overall survival. Hence, there is a substantial need for new therapies. The inability to control the metastatic progression of this localized cancer stems …


Yap And The Hippo Pathway In Pediatric Cancer., Atif Ahmed, Abdalla D. Mohamed, Melissa Gener, Weijie Li, Eugenio Taboada Jan 2017

Yap And The Hippo Pathway In Pediatric Cancer., Atif Ahmed, Abdalla D. Mohamed, Melissa Gener, Weijie Li, Eugenio Taboada

Manuscripts, Articles, Book Chapters and Other Papers

The Hippo pathway is an important signaling pathway that controls cell proliferation and apoptosis. It is evolutionarily conserved in mammals and is stimulated by cell-cell contact, inhibiting cell proliferation in response to increased cell density. During early embryonic development, the Hippo signaling pathway regulates organ development and size, and its functions result in the coordinated balance between proliferation, apoptosis, and differentiation. Its principal effectors, YAP and TAZ, regulate signaling by the embryonic stem cells and determine cell fate and histogenesis. Dysfunction of this pathway contributes to cancer development in adults and children. Emerging studies have shed light on the upregulation …


Silibinin-Mediated Metabolic Reprogramming Attenuates Pancreatic Cancer-Induced Cachexia And Tumor Growth., Surendra K. Shukla, Aneesha Dasgupta, Kamiya Mehla, Venugopal Gunda, Enza Vernucci, Joshua J. Souchek, Gennifer Goode, Ryan King, Anusha Mishra, Ibha Rai, Sangeetha Nagarajan, Nina V. Chaika, Fang Yu, Surendra K. Shukla Dec 2015

Silibinin-Mediated Metabolic Reprogramming Attenuates Pancreatic Cancer-Induced Cachexia And Tumor Growth., Surendra K. Shukla, Aneesha Dasgupta, Kamiya Mehla, Venugopal Gunda, Enza Vernucci, Joshua J. Souchek, Gennifer Goode, Ryan King, Anusha Mishra, Ibha Rai, Sangeetha Nagarajan, Nina V. Chaika, Fang Yu, Surendra K. Shukla

Journal Articles: Eppley Institute

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic …


Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco Sep 2014

Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are …


Ron Knockdown And Ron Monoclonal Antibody Imc-Ron8 Sensitize Pancreatic Cancer To Histone Deacetylase Inhibitors (Hdaci)., Yi Zou, Gillian M. Howell, Lisa E. Humphrey, J. Wang, Michael G. Brattain Jul 2013

Ron Knockdown And Ron Monoclonal Antibody Imc-Ron8 Sensitize Pancreatic Cancer To Histone Deacetylase Inhibitors (Hdaci)., Yi Zou, Gillian M. Howell, Lisa E. Humphrey, J. Wang, Michael G. Brattain

Journal Articles: Eppley Institute

Recepteur d'origine nantais (Ron) is overexpressed in a panel of pancreatic cancer cells and tissue samples from pancreatic cancer patients. Ron can be activated by its ligand macrophage stimulating protein (MSP), thereby activating oncogenic signaling pathways. Crosstalk between Ron and EGFR, c-Met, or IGF-1R may provide a mechanism underlying drug resistance. Thus, targeting Ron may represent a novel therapeutic strategy. IMC-RON8 is the first Ron monoclonal antibody (mAb) entering clinical trial for targeting Ron overexpression. Our studies show IMC-RON8 downmodulated Ron expression in pancreatic cancer cells and significantly blocked MSP-stimulated Ron activation, downstream Akt and ERK phosphorylation, and survivin mRNA …


Intra-Tumoral Heterogeneity In Metastatic Potential And Survival Signaling Between Iso-Clonal Hct116 And Hct116b Human Colon Carcinoma Cell Lines., Sanjib Chowdhury, Melanie Ongchin, Elizabeth Sharratt, Ivan Dominguez, J. Wang, Michael G. Brattain, Ashwani Rajput Apr 2013

Intra-Tumoral Heterogeneity In Metastatic Potential And Survival Signaling Between Iso-Clonal Hct116 And Hct116b Human Colon Carcinoma Cell Lines., Sanjib Chowdhury, Melanie Ongchin, Elizabeth Sharratt, Ivan Dominguez, J. Wang, Michael G. Brattain, Ashwani Rajput

Journal Articles: Eppley Institute

BACKGROUND: Colorectal cancer (CRC) metastasis is a leading cause of cancer-related deaths in the United States. The molecular mechanisms underlying this complex, multi-step pathway are yet to be completely elucidated. Recent reports have stressed the importance of intra-tumoral heterogeneity in the development of a metastatic phenotype. The purpose of this study was to characterize the intra-tumoral phenotypic heterogeneity between two iso-clonal human colon cancer sublines HCT116 and HCT116b on their ability to undergo metastatic colonization and survive under growth factor deprivation stress (GFDS).

MATERIALS AND METHODS: HCT116 and HCT116b cells were transfected with green fluorescence protein and subcutaneously injected into …


Tgf-Beta Suppresses Vegfa-Mediated Angiogenesis In Colon Cancer Metastasis., Liying Geng, Anathbandhu Chaudhuri, G. Talmon, James L. Wisecarver, J. Wang Mar 2013

Tgf-Beta Suppresses Vegfa-Mediated Angiogenesis In Colon Cancer Metastasis., Liying Geng, Anathbandhu Chaudhuri, G. Talmon, James L. Wisecarver, J. Wang

Journal Articles: Eppley Institute

The FET cell line, derived from an early stage colon carcinoma, is non-tumorigenic in athymic nude mice. Engineered FET cells that express TGF-α (FETα) display constitutively active EGFR/ErbB signaling. These cells readily formed xenograft tumors in athymic nude mice. Importantly, FETα cells retained their response to TGF-beta-mediated growth inhibition, and, like the parental FET cells, expression of a dominant negative TGF-beta type II receptor (DNRII) in FETα cells (FETα/DNRII) abrogated responsiveness to TGF-beta-induced growth inhibition and apoptosis under stress conditions in vitro and increased metastatic potential in an orthotopic model in vivo, which indicates metastasis suppressor activity of TGF-beta signaling …


Transforming Growth Factor-Β Suppresses Metastasis In A Subset Of Human Colon Carcinoma Cells., Neka A.K. Simms, Ashwani Rajput, Elizabeth A. Sharratt, Melanie Ongchin, Carol A. Teggart, J. Wang, Michael G. Brattain Jun 2012

Transforming Growth Factor-Β Suppresses Metastasis In A Subset Of Human Colon Carcinoma Cells., Neka A.K. Simms, Ashwani Rajput, Elizabeth A. Sharratt, Melanie Ongchin, Carol A. Teggart, J. Wang, Michael G. Brattain

Journal Articles: Eppley Institute

BACKGROUND: TGFβ signaling has typically been associated with suppression of tumor initiation while the role it plays in metastasis is generally associated with progression of malignancy. However, we present evidence here for an anti-metastatic role of TGFβ signaling.

METHODS: To test the importance of TGFβ signaling to cell survival and metastasis we compared human colon carcinoma cell lines that are either non-tumorigenic with TGFβ response (FET), or tumorigenic with TGFβ response (FETα) or tumorigenic with abrogated TGFβ response via introduction of dominant negative TGFβRII (FETα/DN) and their ability to metastasize. Metastatic competency was assessed by orthotopic transplantation. Metastatic colony formation …


Integrin (Alpha 6 Beta 4) Regulation Of Eif-4e Activity And Vegf Translation: A Survival Mechanism For Carcinoma Cells, Jun Chung, Robin E. Bachelder, Elizabeth A. Lipscomb, Leslie M. Shaw, Arthur M. Mercurio Nov 2010

Integrin (Alpha 6 Beta 4) Regulation Of Eif-4e Activity And Vegf Translation: A Survival Mechanism For Carcinoma Cells, Jun Chung, Robin E. Bachelder, Elizabeth A. Lipscomb, Leslie M. Shaw, Arthur M. Mercurio

Arthur M. Mercurio

We define a novel mechanism by which integrins regulate growth factor expression and the survival of carcinoma cells. Specifically, we demonstrate that the alpha 6 beta 4 integrin enhances vascular endothelial growth factor (VEGF) translation in breast carcinoma cells. The mechanism involves the ability of this integrin to stimulate the phosphorylation and inactivation of 4E-binding protein (4E-BP1), a translational repressor that inhibits the function of eukaryotic translation initiation factor 4E (eIF-4E). The regulation of 4E-BP1 phosphorylation by alpha 6 beta 4 derives from the ability of this integrin to activate the PI-3K-Akt pathway and, consequently, the rapamycin-sensitive kinase mTOR that …


P53 Inhibits Alpha 6 Beta 4 Integrin Survival Signaling By Promoting The Caspase 3-Dependent Cleavage Of Akt/Pkb, Robin E. Bachelder, Mark J. Ribick, Alessandra Marchetti, Rita Falcioni, Silvia Soddu, Kathryn R. Davis, Arthur M. Mercurio Nov 2010

P53 Inhibits Alpha 6 Beta 4 Integrin Survival Signaling By Promoting The Caspase 3-Dependent Cleavage Of Akt/Pkb, Robin E. Bachelder, Mark J. Ribick, Alessandra Marchetti, Rita Falcioni, Silvia Soddu, Kathryn R. Davis, Arthur M. Mercurio

Arthur M. Mercurio

Although the interaction of matrix proteins with integrins is known to initiate signaling pathways that are essential for cell survival, a role for tumor suppressors in the regulation of these pathways has not been established. We demonstrate here that p53 can inhibit the survival function of integrins by inducing the caspase-dependent cleavage and inactivation of the serine/threonine kinase AKT/PKB. Specifically, we show that the alpha6beta4 integrin promotes the survival of p53-deficient carcinoma cells by activating AKT/PKB. In contrast, this integrin does not activate AKT/PKB in carcinoma cells that express wild-type p53 and it actually stimulates their apoptosis, in agreement with …


Release Of Camp Gating By The Alpha6beta4 Integrin Stimulates Lamellae Formation And The Chemotactic Migration Of Invasive Carcinoma Cells, Kathleen L. O'Connor, Leslie M. Shaw, Arthur M. Mercurio Nov 2010

Release Of Camp Gating By The Alpha6beta4 Integrin Stimulates Lamellae Formation And The Chemotactic Migration Of Invasive Carcinoma Cells, Kathleen L. O'Connor, Leslie M. Shaw, Arthur M. Mercurio

Arthur M. Mercurio

The alpha6beta4 integrin promotes carcinoma in-vasion by its activation of a phosphoinositide 3-OH (PI3-K) signaling pathway (Shaw, L.M., I. Rabinovitz, H.H.-F. Wang, A. Toker, and A.M. Mercurio. Cell. 91: 949-960). We demonstrate here using MDA-MB-435 breast carcinoma cells that alpha6beta4 stimulates chemotactic migration, a key component of invasion, but that it has no influence on haptotaxis. Stimulation of chemotaxis by alpha6beta4 expression was observed in response to either lysophosphatidic acid (LPA) or fibroblast conditioned medium. Moreover, the LPA-dependent formation of lamellae in these cells is dependent upon alpha6beta4 expression. Both lamellae formation and chemotactic migration are inhibited or "gated" by …


Protein Kinase C-Dependent Mobilization Of The Alpha6beta4 Integrin From Hemidesmosomes And Its Association With Actin-Rich Cell Protrusions Drive The Chemotactic Migration Of Carcinoma Cells, Isaac Rabinovitz, Alex Toker, Arthur M. Mercurio Nov 2010

Protein Kinase C-Dependent Mobilization Of The Alpha6beta4 Integrin From Hemidesmosomes And Its Association With Actin-Rich Cell Protrusions Drive The Chemotactic Migration Of Carcinoma Cells, Isaac Rabinovitz, Alex Toker, Arthur M. Mercurio

Arthur M. Mercurio

We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the alpha6beta4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express alpha6beta4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the alpha6beta4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis ( approximately 1 ng/ml), the alpha6beta4 integrin is …


Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil Jun 2010

Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

K-ras is the most commonly mutated oncogene in pancreatic cancer and its activation in murine models is sufficient to recapitulate the spectrum of lesions seen in human pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that Notch receptor signaling becomes reactivated in a subset of PDACs, leading to the hypothesis that Notch1 functions as an oncogene in this setting. To determine whether Notch1 is required for K-ras-induced tumorigenesis, we used a mouse model in which an oncogenic allele of K-ras is activated and Notch1 is deleted simultaneously in the pancreas. Unexpectedly, the loss of Notch1 in this model resulted in increased …


Colon Carcinoma Cells Harboring Pik3ca Mutations Display Resistance To Growth Factor Deprivation Induced Apoptosis., J. Wang, Karen Kuropatwinski, Jennie Hauser, Michael R. Rossi, Yunfei Zhou, Alexis Conway, Julie L.C. Kan, Neil W. Gibson, James K.V. Willson, John K. Cowell, Michael G. Brattain Mar 2007

Colon Carcinoma Cells Harboring Pik3ca Mutations Display Resistance To Growth Factor Deprivation Induced Apoptosis., J. Wang, Karen Kuropatwinski, Jennie Hauser, Michael R. Rossi, Yunfei Zhou, Alexis Conway, Julie L.C. Kan, Neil W. Gibson, James K.V. Willson, John K. Cowell, Michael G. Brattain

Journal Articles: Eppley Institute

PIK3CA, encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K), is mutated in a variety of human cancers. We screened the colon cancer cell lines previously established in our laboratory for PIK3CA mutations and found that four of them harbored gain of function mutations. We have now compared a panel of mutant and wild-type cell lines for cell proliferation and survival in response to stress. There was little difference in PI3K activity between mutant PIK3CA-bearing cells (mutant cells) and wild-type PIK3CA-bearing cells (wild-type cells) under optimal growth conditions. However, the mutant cells showed constitutive PI3K activity during growth factor deprivation …