Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 211

Full-Text Articles in Nucleic Acids, Nucleotides, and Nucleosides

Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill Dec 2022

Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill

SURE_J: Science Undergraduate Research Journal

Mitochondria are cytoplasmic, double-membrane organelles that synthesise adenosine triphosphate (ATP). Mitochondria contain their own genome, mitochondrial DNA (mtDNA), which is maternally inherited from the oocyte. Mitochondrial proteins are encoded by either nuclear DNA (nDNA) or mtDNA, and both code for proteins forming the mitochondrial oxidative phosphorylation (OXPHOS) complexes of the respiratory chain. These complexes form a chain that allows the passage of electrons down the electron transport chain (ETC) through a proton motive force, creating ATP from adenosine diphosphate (ADP). This study aims to explore current and prospective therapies for mitochondrial disorders (MTDS). MTDS are clinical syndromes coupled with abnormalities …


Rna Isolation In Duchenne Muscular Dystrophy (Dmd) Mice Models, Salem Abu Al-Burak Aug 2022

Rna Isolation In Duchenne Muscular Dystrophy (Dmd) Mice Models, Salem Abu Al-Burak

Undergraduate Student Research Internships Conference

Fibrosis is a progressive and typically irreversible disease process characterized by the excessive deposition of collagen in organs and in tissues of the musculoskeletal (MSK) system1,2. This process, which causes loss of organ and tissue function, can be initiated by micro-traumas3, an excessive and/or prolonged immune response1, the activation and proliferation of fibrosis-inducing progenitor cells4, and a pro-fibrotic extra-cellular microenvironment5. In parallel with the events that initiate fibrosis, genetic or environmental influences may cause cells and tissues to become predisposed to fibrosis development prior to initiation. This suggests that these …


Synthesis And Evaluation Of Anti-Hiv Activity Of Mono- And Di-Substituted Phosphonamidate Conjugates Of Tenofovir, Aaminat Qureshi, Louise A. Ouattara, Naglaa Salem El-Sayed, Amita Verma, Gustavo F. Doncel, Muhammad Iqbal Choudhary, Hina Siddiqui, Keykavous Parang Jul 2022

Synthesis And Evaluation Of Anti-Hiv Activity Of Mono- And Di-Substituted Phosphonamidate Conjugates Of Tenofovir, Aaminat Qureshi, Louise A. Ouattara, Naglaa Salem El-Sayed, Amita Verma, Gustavo F. Doncel, Muhammad Iqbal Choudhary, Hina Siddiqui, Keykavous Parang

Pharmacy Faculty Articles and Research

The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several …


Biowill - Characterising Willow Bark Bio-Actives For Skin Therapies, Arnold Marisa Jun 2022

Biowill - Characterising Willow Bark Bio-Actives For Skin Therapies, Arnold Marisa

ORBioM (Open Research BioSciences Meeting)

Willow bark is considered as a disposable by-product when processing willow for biomass. Willow (Salix) is known to contain high value bioactive compounds which include salicin and its derivatives, and other phytochemicals of interest such as polyphenols and flavonoids. The plant is historically known as the primary source of salicylates to which the well-known drug aspirin is derived from. The work forms part of the Interreg project BioWILL, which is focused on integrated “Zero Waste” biorefinery utilising all fractions of willow feedstock for the production of biochemicals and renewable energy. This project aims to investigate the crude and …


Discovering The Role Of Repeat Sequences In Regulation Of The Phaz Gene In Streptomyces Sp. Sfb5a, Harrison Senter, Stephen Baron Apr 2022

Discovering The Role Of Repeat Sequences In Regulation Of The Phaz Gene In Streptomyces Sp. Sfb5a, Harrison Senter, Stephen Baron

Honors Projects

Streptomyces sp. SFB5A is an actinomycete (filamentous bacterium) that degrades PHB using an extracellular PHB depolymerase. PHB depolymerase synthesis is induced by growth on PHB and repressed by glucose (or other preferred carbon sources)2, which suggests that there is transcriptional regulation of its corresponding gene, phaZ. Binding sites are suspected to be the repeat sequences found in the phaZ gene. There are 3 different sets of primers that can be made in order to emphasize specific functional repeats while disrupting the functionality of others. The goal of the project is to transform Streptomyces sp. 5A with constructs …


Determining The Genomic Localization And Binding Partners Of Zinc Finger Protein 410, Mariko Locke Apr 2022

Determining The Genomic Localization And Binding Partners Of Zinc Finger Protein 410, Mariko Locke

Senior Honors Theses

The results of a folate deficiency study affecting cognition in mice suggested the altered genes may be controlled by a transcription factor known as Zinc Finger Protein 410 (Zfp410). Due to a lack of literature on Zfp410’s interacting proteins and DNA-binding location, our study aims to further elucidate the role Zfp410 plays in affecting cognition. A custom antibody was used to determine the Zfp410 isoforms present in mouse and rat brains. Moreover, the antibody was used to determine the binding partners of Zfp410 in the brain and locate specific genomic regions/sequences with which it associates in vivo. These results may …


Modified Ysk12-Mend-Sirna In Dendritic Cells For Cancer Immunotherapy, Syed S. Alam Jan 2022

Modified Ysk12-Mend-Sirna In Dendritic Cells For Cancer Immunotherapy, Syed S. Alam

Undergraduate Research Posters

Tumors may induce tolerogenesis through signaling dendritic cells to produce tolerogenic molecules, such as indoleamine 2, 3-dioxygenase 1 (IDO1). Tumor-associated immunosuppression is associated with higher mortality in patients. Small interfering RNA (siRNA) has been shown to silence specific target genes in the target cell. The siRNA associated with these genes could support a gene knockdown of these immunosuppressors and reduce mortality. Delivery of these therapeutic nucleic acids is difficult in vivo because siRNA is easily broken down inside the cell and the bloodstream through present nucleases. Use of liposome polymers has been reviewed extensively in literature. YSK12-C4, a lipid nanoparticle …


A Study Of Cobalt (Iii) Oxide Nanoparticle Delivery Of Sirna Molecules Directed Against Signaling Intermediates Of The P2y2 Receptor, Rachel Blair Stroud Jan 2022

A Study Of Cobalt (Iii) Oxide Nanoparticle Delivery Of Sirna Molecules Directed Against Signaling Intermediates Of The P2y2 Receptor, Rachel Blair Stroud

MSU Graduate Theses

G protein-coupled receptors are evolutionarily ubiquitous sensors of extracellular signals, propagating intracellular signal cascades through heterotrimeric G proteins. P2Y2 receptors are GPCRs which are activated by extracellular nucleotides to mediate signaling cascades via Gαq coupling. Many GPCRs are subject to a common mechanism for signal termination involving phosphorylation of the C-terminal tail followed by β-arrestin binding and subsequent endocytic internalization of the complex. This effect has been described for the P2Y2 R in the 1321N1 astrocytoma cell line, and UTP-induced activation and desensitization profiles have been previously defined. There is need to develop molecular vehicles for safe and …


Novel Peptide Biomaterials For Enhanced Delivery Of Sirna Cargo For Treatment Of Ovarian Cancer, Timothy Samec Dec 2021

Novel Peptide Biomaterials For Enhanced Delivery Of Sirna Cargo For Treatment Of Ovarian Cancer, Timothy Samec

All Dissertations

Ovarian cancer is the 7th leading cause of cancer related death and the 5th most commonly diagnosed cancer among women. Primarily diagnosed in stage III or stage IV, aggressive treatment is necessary and involves surgical debulking and administration of systemic chemotherapeutics. Unfortunately, these strategies fall short in effectively treating ovarian cancer and many patients experience local disease recurrence, development of multidrug resistant tumors, regional or distant metastatic events, or a combination of the three. As such, there is a significant need for additional treatment options and methods of delivery to improve therapeutic efficacy and disease survivability.

RNA interference …


Synergistic Anticancer Response Of Curcumin And Piperine Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against Glioblastoma Multiforme, Xinyi Zhao, Bilal Javad, Daxing Cui, James Curtin, Furong Tian Oct 2021

Synergistic Anticancer Response Of Curcumin And Piperine Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against Glioblastoma Multiforme, Xinyi Zhao, Bilal Javad, Daxing Cui, James Curtin, Furong Tian

Articles

Glioblastoma multiforme (GBM) is the most aggressive and commonly diag- 11 nosed brain cancer and presents a strong resistance to routine chemotherapeutic drugs. 12 The present study involves the synthesis of Lignin-g- p (NIPAM-co-DMAEMA) gold 13 nanogel, loaded with curcumin and piperine to treat GBM. The application has three 14 functions: (1) overcome the limitations of biodistribution, (2) enhance the toxicity of an- 15 ticancer drugs against GBM, (3) identify the uptake pathway. Atom transfer radical 16 polymerization was used to synthesize the Lignin-g-PNIPAM network, crosslinked with 17 the gold nanoparticles (GNPs) to self-assemble into nanogels. The size distribution and …


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


Theranostic Applications Of Sirna Bioconjugates In Cancer Detection And Treatment, Sunil S. Shah May 2021

Theranostic Applications Of Sirna Bioconjugates In Cancer Detection And Treatment, Sunil S. Shah

Seton Hall University Dissertations and Theses (ETDs)

Abstract

The emerging field of RNA nanotechnology has led to rapid advances in the applications of RNA in chemical biology, medicinal chemistry, and biotechnology. At the forefront of its utility is the ability to self-assemble multiple siRNAs into nanostructure formulations capable of targeting selected oncogenes and potentiating the gene therapy of malignant tumors. Self-assembled siRNA integrates multiple siRNAs within a single molecular platform for silencing multiple oncogenic mRNA targets with high precision and efficacy to potentially induce cancer cell apoptosis through the RNA interference (RNAi) pathway. Furthermore, the conjugation of siRNA self-assemblies with bio-active probes results in multi-functional theranostic (therapy+diagnostic) …


Use Of Antisense Oligonucleotides To Target Notch2 In Mouse Chondrocytes, Gabrielle Viviana Lanza Apr 2021

Use Of Antisense Oligonucleotides To Target Notch2 In Mouse Chondrocytes, Gabrielle Viviana Lanza

Honors Scholar Theses

NOTCH2 is a transmembrane receptor that is part of the Notch receptor family, known for controlling cell differentiation and function. Notch receptors play a crucial role in skeletal development and bone homeostasis. Hajdu Cheney Syndrome (HCS) is a rare monogenic disorder affecting the skeleton caused by a gain-of-function mutation in NOTCH2. Antisense oligonucleotides (ASO) are sequence-specific single-stranded nucleic acids that bind to target mRNA and initiate mRNA degradation. While previous work has explored the role of Notch2 ASOs in osteoblasts and osteoclasts, this paper explores the role of Notch2 and Notch2 ASOs in cells of cartilage tissue. The effect of …


Suppression Of Human Coronavirus 229e Infection In Lung Fibroblast Cells Via Rna Interference, Hamidreza Montazeri Aliabadi, Jennifer Totonchy, Parvin Mahdipoor, Keykavous Parang, Hasan Uludağ Apr 2021

Suppression Of Human Coronavirus 229e Infection In Lung Fibroblast Cells Via Rna Interference, Hamidreza Montazeri Aliabadi, Jennifer Totonchy, Parvin Mahdipoor, Keykavous Parang, Hasan Uludağ

Pharmacy Faculty Articles and Research

Despite extensive efforts to repurpose approved drugs, discover new small molecules, and develop vaccines, COVID-19 pandemic is still claiming victims around the world. The current arsenal of antiviral compounds did not perform well in the past viral infections (e.g., SARS), which casts a shadow of doubt for use against the new SARS-CoV-2. Vaccines should offer the ultimate protection; however, there is limited information about the longevity of the generated immunity and the protection against possible mutations. This study uses Human Coronavirus 229E as a model coronavirus to test the hypothesis that effective delivery of virus-specific siRNAs to infected cells will …


Synthesis And Characterization Of Antiviral Drug Candidate Molecules Against The Respiratory Syncytial Virus, Ali Abbas Sabi Apr 2021

Synthesis And Characterization Of Antiviral Drug Candidate Molecules Against The Respiratory Syncytial Virus, Ali Abbas Sabi

Dissertations

Abstract

Pyrrole-imidazole polyamides (PAs) are small molecules that typically develop H-bonds to bind to the minor groove of DNA. PAs are of interest because they can be designed to recognize DNA sequences. PAs have numerous biomedical applications in areas like regulation of gene expression and antimicrobial activity. Specifically, polyamide UMSL1011 (a polyamide synthesized in Dr. Bashkin's lab) inhibits replicating vesicular stomatitis virus (VSV) by binding the viral RNA inside the nucleocapsid, as indicated by research at Professor Ming Luo's lab at Georgia State University. However, some reports have revealed that polyamides have a low affinity for “simple” double-stranded RNA. Nevertheless, …


Nmr Solution Structures Of Runella Slithyformis Rna 2'-Phosphotransferase Tpt1 Provide Insights Into Nad+ Binding And Specificity, Sébastien Alphonse, Ankan Banerjee, Swathi Dantuluri, Stewart Shuman, Ranajeet Ghose Apr 2021

Nmr Solution Structures Of Runella Slithyformis Rna 2'-Phosphotransferase Tpt1 Provide Insights Into Nad+ Binding And Specificity, Sébastien Alphonse, Ankan Banerjee, Swathi Dantuluri, Stewart Shuman, Ranajeet Ghose

Publications and Research

Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by …


Amphiphilic Cell-Penetrating Peptides Containing Natural And Unnatural Amino Acids As Drug Delivery Tools And Antimicrobial Agents, David Salehi Jan 2021

Amphiphilic Cell-Penetrating Peptides Containing Natural And Unnatural Amino Acids As Drug Delivery Tools And Antimicrobial Agents, David Salehi

Pharmaceutical Sciences (MS) Theses

Cell-penetrating peptides containing arginine as positively charged residues and tryptophan or diphenylalanine as hydrophobic residues were synthesized. The synthesis was accomplished through the Fmoc solid-phase peptide synthesis in the presence of HBTU and DIPEA. The side-chain protected linear peptides were cleaved from the resin and cyclized in the presence of DIC and HOAt in the solution phase overnight. MALDI-TOF mass spectrometry was used to characterize the peptides.

The cytotoxicity of the synthesized peptides was determined in CCRF-CEM (human, lymphoblast peripheral blood), and HEK-293 (human, embryonic epithelial kidney healthy) cells using the MTS assay. A concentration of 10 µM was found …


Investigation Of The Biosynthesis Of The Nucleoside Antibiotic Sphaerimicin, Jonathan Overbay Jan 2021

Investigation Of The Biosynthesis Of The Nucleoside Antibiotic Sphaerimicin, Jonathan Overbay

Theses and Dissertations--Pharmacy

Antibiotic-resistance has become a widespread problem in the United States and across the globe. Meanwhile, new antibiotics are entering the clinic at an alarmingly low rate. Highly-modified nucleosides, a class of natural products often produced by actinobacteria, target MraY bacterial translocase I. MraY is a clinically unexploited enzyme target that is ubiquitous and essential to peptidoglycan cell wall biosynthesis. The nucleoside antibiotics known vary in efficacy and the functionalities contributing to improved activity is poorly understood. Sphaerimicin, a newly discovered modified nucleoside, has potent inhibitory activity with an IC50 of 13.65 nM against MraY. In general, sphaerimicin is primarily effective …


Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden Jan 2021

Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden

Theses and Dissertations--Molecular and Cellular Biochemistry

Under pathophysiological conditions, the microtubule protein tau (MAPT) forms neurofibrillary tangles that are the hallmark of sporadic Alzheimer’s disease as well as familial frontotemporal dementias linked to chromosome 17 (FTDP-17). In this work, I report that MAPT forms circular RNAs through backsplicing of exon 12 to either exon 10 or exon 7 (12→10; 12→7), and that these circular RNAs are translated into proteins.

Using stable cell lines overexpressing the circular tau RNAs 12→7 and 12→10, we have discovered that the tau circular RNA 12→7 is translated in a rolling circle, giving rise to multiple proteins. This circular RNA …


Great Expectations: Phosph(On)Ate Prodrugs In Drug Design—Opportunities And Limitations, Victoria Yan Dec 2020

Great Expectations: Phosph(On)Ate Prodrugs In Drug Design—Opportunities And Limitations, Victoria Yan

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

Phosphate and phosphonates are chemical moieties with historical precedence in anticancer and antiviral nucleotide analogues. Synchronous to modern efforts identifying novel therapeutic targets in cancer, such chemical moieties are being investigated in the design of novel inhibitors with antineoplastic potential. A central challenge to the delivery of phosph(on)ate-containing drugs is their anionic character at physiological pH, which portends poor membrane permeability. This limitation has been successfully overcome through the use of prodrugs. When attached to the phosph(on)ate moiety, prodrugs mask the negative charge and easily enable cell permeability. Upon cellular entry, the promoieties are enzymatically or environmentally cleaved to unveil …


Modulation Of Escherichia Coli Translation By The Specific Inactivation Of TrnaGly Under Oxidative Stress, Lorenzo Eugenio Leiva, Andrea Pincheira, Sara Elgamal, Sandra D. Kienast, Verónica Bravo, Johannes Leufken, Daniela Gutiérrez, Sebastian A. Leidel, Michael Ibba, Assaf Katz Aug 2020

Modulation Of Escherichia Coli Translation By The Specific Inactivation Of TrnaGly Under Oxidative Stress, Lorenzo Eugenio Leiva, Andrea Pincheira, Sara Elgamal, Sandra D. Kienast, Verónica Bravo, Johannes Leufken, Daniela Gutiérrez, Sebastian A. Leidel, Michael Ibba, Assaf Katz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria …


Prospects For Rnai Therapy Of Covid-19, Hasan Uludağ, Kylie Parent, Hamidreza Montazeri Aliabadi, Azita Haddadi Jul 2020

Prospects For Rnai Therapy Of Covid-19, Hasan Uludağ, Kylie Parent, Hamidreza Montazeri Aliabadi, Azita Haddadi

Pharmacy Faculty Articles and Research

COVID-19 caused by the SARS-CoV-2 virus is a fast emerging disease with deadly consequences. The pulmonary system and lungs in particular are most prone to damage caused by the SARS-CoV-2 infection, which leaves a destructive footprint in the lung tissue, making it incapable of conducting its respiratory functions and resulting in severe acute respiratory disease and loss of life. There were no drug treatments or vaccines approved for SARS-CoV-2 at the onset of pandemic, necessitating an urgent need to develop effective therapeutics. To this end, the innate RNA interference (RNAi) mechanism can be employed to develop front line therapies against …


Phosphodiesterase Isoforms And Camp Compartments In The Development Of New Therapies For Obstructive Pulmonary Diseases, Martina Schmidt, Isabella Cattani-Cavalieri, Francisco J. Nuñez, Rennolds S. Ostrom Jul 2020

Phosphodiesterase Isoforms And Camp Compartments In The Development Of New Therapies For Obstructive Pulmonary Diseases, Martina Schmidt, Isabella Cattani-Cavalieri, Francisco J. Nuñez, Rennolds S. Ostrom

Pharmacy Faculty Articles and Research

The second messenger molecule 3′5′-cyclic adenosine monophosphate (cAMP) imparts several beneficial effects in lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). While cAMP is bronchodilatory in asthma and COPD, it also displays anti-fibrotic properties that limit fibrosis. Phosphodiesterases (PDEs) metabolize cAMP and thus regulate cAMP signaling. While some existing therapies inhibit PDEs, there are only broad family specific inhibitors. The understanding of cAMP signaling compartments, some centered around lipid rafts/caveolae, has led to interest in defining how specific PDE isoforms maintain these signaling microdomains. The possible altered expression of PDEs, and thus abnormal …


Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba Jun 2020

Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation—initiation, elongation, and termination—cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels …


Synthesis, Characterisation And Biological Evaluation Of Tyramine Derived Schiff Base Ligand And Its Transition Metal(Ii) Complexes, Abdul Khader Jailani, N.S.K. Gowthaman, Mookkandi Palsamy Kesavan Jun 2020

Synthesis, Characterisation And Biological Evaluation Of Tyramine Derived Schiff Base Ligand And Its Transition Metal(Ii) Complexes, Abdul Khader Jailani, N.S.K. Gowthaman, Mookkandi Palsamy Kesavan

Karbala International Journal of Modern Science

In this study, a new tyramine derived Schiff base ligand (L) (L=1,3-phenylene-bis-4-aminoantipyrinyl-4-aminoethylphenol) and its derived transition metal(II) complexes [Cu(L)Cl2](1), [Ni(L)Cl2](2), [Co(L)Cl2] (3) and [Zn(L)Cl2] (4) have been synthesized and well characterized by the way of different spectroscopic and analytical techniques. Analytical and spectroscopic studies result suggests that metal(II) complexes more probably have octahedral geometry. DNA binding tendency of L and metal(II) complexes 1-4 have been assessed by probing their ability to bind with Calf Thymus DNA (CT-DNA) via electronic absorption and cyclic voltammetry titration methods. The results clearly reveal that the metal(II) …


Comparative Antiviral Activity Of Remdesivir And Anti-Hiv Nucleoside Analogs Against Human Coronavirus 229e (Hcov-229e), Keykavous Parang, Naglaa Salem El-Sayed, Assad J. Kazeminy, Rakesh Tiwari May 2020

Comparative Antiviral Activity Of Remdesivir And Anti-Hiv Nucleoside Analogs Against Human Coronavirus 229e (Hcov-229e), Keykavous Parang, Naglaa Salem El-Sayed, Assad J. Kazeminy, Rakesh Tiwari

Pharmacy Faculty Articles and Research

Remdesivir is a nucleotide prodrug that is currently undergoing extensive clinical trials for the treatment of COVID-19. The prodrug is metabolized to its active triphosphate form and interferes with the action of RNA-dependent RNA polymerase of SARS-COV-2. Herein, we report the antiviral activity of remdesivir against human coronavirus 229E (HCoV-229E) compared to known anti-HIV agents. These agents included tenofovir (TFV), 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA), alovudine (FLT), lamivudine (3TC), and emtricitabine (FTC), known as nucleoside reverse-transcriptase inhibitors (NRTIs), and a number of 5′-O-fatty acylated anti-HIV nucleoside conjugates. The anti-HIV nucleosides interfere with HIV RNA-dependent DNA polymerase and/or act as chain terminators. …


Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba Apr 2020

Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key …


Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell Feb 2020

Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and independently in eight distinct clades of trypanosomes, identifying parasite-specific informative features, …


Elucidating Molecular Function Of Mithramycin And Analogues For The Treatment Of Ews-Ets Expressing Cancers, Reiya Hayden Jan 2020

Elucidating Molecular Function Of Mithramycin And Analogues For The Treatment Of Ews-Ets Expressing Cancers, Reiya Hayden

Theses and Dissertations--Pharmacy

Introduction: Chromosomal translocations are common in cancer. In many cancers such as prostate cancer, leukemia and Ewing sarcoma, chromosomal translocations are the main driver of malignancy. Ewing sarcoma is a cancer diagnosed mostly in children and adolescents that has very grim outcomes for patients with metastasis and recurrent disease. Malignancy in Ewing sarcoma is due to EWS-FLI1, an aberrant transcription factor that is the result of a chromosomal translocation. EWS-FLI1 is the main driver of oncogenesis in Ewing sarcoma and has been the target of many drugs developed to treat the disease. Mithramycin (MTM) was identified as a potent inhibitor …


Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba Dec 2019

Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mechanisms have evolved to prevent errors in replication, transcription, and translation of genetic material, with translational errors occurring most frequently. Errors in protein synthesis can occur at two steps, during tRNA aminoacylation and ribosome decoding. Recent advances in protein mass spectrometry have indicated that previous reports of translational errors have potentially underestimated the frequency of these events, but also that the majority of translational errors occur during ribosomal decoding, suggesting that aminoacylation errors are evolutionarily less tolerated. Despite that interpretation, there is evidence that some aminoacylation errors may be regulated, and thus provide a benefit to the cell, while others …