Open Access. Powered by Scholars. Published by Universities.®

Enzymes and Coenzymes Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Enzymes and Coenzymes

Variables Affecting The Extraction Of Antioxidants In Cold And Hot Brew Coffee: A Review, Brian Yust, Frank Wilkinson, Niny Rao Dec 2023

Variables Affecting The Extraction Of Antioxidants In Cold And Hot Brew Coffee: A Review, Brian Yust, Frank Wilkinson, Niny Rao

College of Life Sciences Faculty Papers

Coffee beans are a readily available, abundant source of antioxidants used worldwide. With the increasing interest in and consumption of coffee beverages globally, research into the production, preparation, and chemical profile of coffee has also increased in recent years. A wide range of variables such as roasting temperature, coffee grind size, brewing temperature, and brewing duration can have a significant impact on the extractable antioxidant content of coffee products. While there is no single standard method for measuring all of the antioxidants found in coffee, multiple methods which introduce the coffee product to a target molecule or reagent can be …


Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens Dec 2023

Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme that catalyzes the reduction of nitrogen gas into ammonia. Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Many nitrogen fixing bacteria protect nitrogenase from CO inhibition using the protective protein CowN. This work demonstrates that a conserved glutamic acid residue near the C-terminus of Gluconacetobacter diazotrophicus CowN is necessary for its function. Mutation of the glutamic acid residue abolishes both CowN’s protection against CO inhibition and the ability of CowN to bind to nitrogenase. In contrast, a conserved C-terminal cysteine residue is not important for CO protection by CowN. Overall, this work …


Design And Synthesis Of Peripherally Selective Endocannabinoid Enzyme Inhibitors For Ocular Indications, Kezia Reji Thomas May 2023

Design And Synthesis Of Peripherally Selective Endocannabinoid Enzyme Inhibitors For Ocular Indications, Kezia Reji Thomas

Senior Honors Theses

Peripherally selective compounds have been found to stimulate endocannabinoid receptor activity, which has been observed to have positive physiological effects such as ocular wound healing and inflammation control. The activation of the cannabinoid 1 receptor via binding of the endogenous ligands, anandamide and 2-arachidonoylglycerol, has been indicated to elicit these effects. Both ligands are controlled by two hydrolase enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which can be targeted for therapeutic inhibition. Sulfonamide derivatives of JZL195 containing carbamate functionalities in the southern region of the inhibitor compounds were produced using novel carbamate exchange reactions. Polar functionalities were …


High Energy Blue Light Induces Oxidative Stress And Retinal Cell Apoptosis, Jessica Malinsky Jan 2023

High Energy Blue Light Induces Oxidative Stress And Retinal Cell Apoptosis, Jessica Malinsky

Capstone Showcase

Blue light (BL) is a high energy, short wavelength spanning 400 to 500 nm. Found in technological and environmental forms, BL has been shown to induce photochemical damage of the retina by reactive oxygen species (ROS) production. Excess ROS leads to oxidative stress, which disrupts retinal mitochondrial structure and function. As mitochondria amply occupy photoreceptors, they also contribute to oxidative stress due to their selectively significant absorption of BL at 400 to 500 nm. ROS generation that induces oxidative stress subsequently promotes retinal mitochondrial apoptosis. BL filtering and preventative mechanisms have been suggested to improve or repair BL-induced retinal damage, …