Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemicals and Drugs

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer Jul 2013

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, …


Structure And Dynamics Of A Primordial Catalytic Fold Generated By In Vitro Evolution, Fa-An Chao, Aleardo Morelli, John C. Haugner Iii, Lewis Churchfield, Lei Shi, Larry R. Masterson, Ritimukta Sarangi, Gianluigi Veglia, Burckhard Seelig Dec 2012

Structure And Dynamics Of A Primordial Catalytic Fold Generated By In Vitro Evolution, Fa-An Chao, Aleardo Morelli, John C. Haugner Iii, Lewis Churchfield, Lei Shi, Larry R. Masterson, Ritimukta Sarangi, Gianluigi Veglia, Burckhard Seelig

Larry Masterson

Engineering functional protein scaffolds capable of carrying out chemical catalysis is a major challenge in enzyme design. Starting from a noncatalytic protein scaffold, we recently generated a new RNA ligase by in vitro directed evolution. This artificial enzyme lost its original fold and adopted an entirely new structure with substantially enhanced conformational dynamics, demonstrating that a primordial fold with suitable flexibility is sufficient to carry out enzymatic function.