Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Chemicals and Drugs

Pnaktide Attenuates Steatohepatitis And Atherosclerosis By Blocking Na/K-Atpase/Ros Amplification In C57bi6 And Apoe Knockout Mice Fed A Western Diet, K Sodhi, K Srikanthan, P Goguet-Rubio, A Nichols, A Mallick, A Nawab, R Martin, P Shah, M Chaudhry, S Sigdel, M El-Hamdani, J Liu, Z Xie, Nader Abraham, J Shapiro Apr 2019

Pnaktide Attenuates Steatohepatitis And Atherosclerosis By Blocking Na/K-Atpase/Ros Amplification In C57bi6 And Apoe Knockout Mice Fed A Western Diet, K Sodhi, K Srikanthan, P Goguet-Rubio, A Nichols, A Mallick, A Nawab, R Martin, P Shah, M Chaudhry, S Sigdel, M El-Hamdani, J Liu, Z Xie, Nader Abraham, J Shapiro

Nader G. Abraham

We have previously reported that the alpha1 subunit of sodium potassium adenosine triphosphatase (Na/K-ATPase), acts as a receptor and an amplifier for reactive oxygen species, in addition to its distinct pumping function. On this background, we speculated that blockade of Na/K-ATPase-induced ROS amplification with a specific peptide, pNaKtide, might attenuate the development of steatohepatitis. To test this hypothesis, pNaKtide was administered to a murine model of NASH: the C57Bl6 mouse fed a "western" diet containing high amounts of fat and fructose. The administration of pNaKtide reduced obesity as well as hepatic steatosis, inflammation and fibrosis. Of interest, we also noted …


Vegf/Neuropilin Signaling In Cancer Stem Cells, Arthur M. Mercurio Mar 2019

Vegf/Neuropilin Signaling In Cancer Stem Cells, Arthur M. Mercurio

Arthur M. Mercurio

The function of vascular endothelial growth factor (VEGF) in cancer extends beyond angiogenesis and vascular permeability. Specifically, VEGF-mediated signaling occurs in tumor cells and this signaling contributes to key aspects of tumorigenesis including the self-renewal and survival of cancer stem cells (CSCs). In addition to VEGF receptor tyrosine kinases, the neuropilins (NRPs) are critical for mediating the effects of VEGF on CSCs, primarily because of their ability to impact the function of growth factor receptors and integrins. VEGF/NRP signaling can regulate the expression and function of key molecules that have been implicated in CSC function including Rho family guanosine triphosphatases …


Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer Jul 2017

Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer

Celia A. Schiffer

Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 A. This structure not only visualizes the active site …


Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer Jul 2017

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein …


Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer Jun 2017

Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. …


Theaflavin-3, 3'-Digallate Decreases Human Ovarian Carcinoma Ovcar-3 Cell-Induced Angiogenesis Via Akt And Notch-1 Pathways, Not Via Mapk Pathways, Ying Gao, Gary O. Rankin, Youying Tu, Yi Charlie Chen May 2017

Theaflavin-3, 3'-Digallate Decreases Human Ovarian Carcinoma Ovcar-3 Cell-Induced Angiogenesis Via Akt And Notch-1 Pathways, Not Via Mapk Pathways, Ying Gao, Gary O. Rankin, Youying Tu, Yi Charlie Chen

Gary O. Rankin

Theaflavin-3, 3'-digallate (TF3) is a black tea polyphenol produced from polymerization and oxidization of the green tea ployphenols epicatechin gallate and (-)-epigallocatechin-3-gallate (EGCG) during fermentation of fresh tea leaves. TF3 has been reported to have anticancer properties. However, the effect of TF3 on tumor angiogenesis and the underlying mechanisms are not clear. In the present study, TF3 was verified to inhibit tumor angiogenesis. Compared with EGCG, TF3 was more potent. TF3 inhibited human ovarian carcinoma OVCAR-3 cell-induced angiogenesis in human umbilical vein endothelial cell model and in chick chorioallantoic membrane model. TF3 reduced tumor angiogenesis by downregulating HIF-1α and VEGF. …


Cloning And Characterization Of The Escherichia Coli Heptosyltransferase Iii: Exploring Substrate Specificity In Lipopolysaccaride Core Biosynthesis, Jagadesh Mudapaka, Erika Taylor Jun 2015

Cloning And Characterization Of The Escherichia Coli Heptosyltransferase Iii: Exploring Substrate Specificity In Lipopolysaccaride Core Biosynthesis, Jagadesh Mudapaka, Erika Taylor

Erika A. Taylor, Ph.D.

Bacterial lipopolysaccharide (LPS) molecules are an important cell surface component that enables adhesion to surfaces and cell motility, amongst other functions. In Escherichia coli, there are multiple Heptosyltransferase enzymes involved in the biosynthesis of the core region of LPS. Here we describe the first ever cloning, expression, purification and characterization of Heptosyltransferase III (HepIII) from E. coli, which catalyzes the addition of an l-glycero-d-manno-heptose (Hep) residue to the growing LPS core via an α(1→7) bond. Inspired by results from our lab on the E. coli HepI, we assessed the catalytic efficiency with phospho-Hep2-Kdo2-Lipid A (PH2K2LA) and two deacylated analogues.


Dysfunctional Conformational Dynamics Of Protein Kinase A Induced By A Lethal Mutant Of Phospholamban Hinder Phosphorylation, Jonggul Kim, Larry R. Masterson, Alessandro Cembran, Raffaello Verardi, Lei Shi, Jiali Gao, Susan S. Taylor, Gianluigi Veglia Dec 2014

Dysfunctional Conformational Dynamics Of Protein Kinase A Induced By A Lethal Mutant Of Phospholamban Hinder Phosphorylation, Jonggul Kim, Larry R. Masterson, Alessandro Cembran, Raffaello Verardi, Lei Shi, Jiali Gao, Susan S. Taylor, Gianluigi Veglia

Larry Masterson

In the heart, phospholamban regulates Ca2+-ATPase function, controlling cardiac output. A single deletion (R14del) in the phospholamban recognition sequence kinase A is linked to the progression of familial dilated cardiomyopathy, a leading cause of death worldwide. Here, we provide the molecular mechanism for the sluggish phosphorylation of R14del by protein kinase A. We found that the R14 deletion affects the organization of the active site, which remains partially open and quite dynamic, preventing the formation of catalytically committed complex. We conclude that well-tuned structural and dynamic interplay between kinase and substrate is crucial for efficient phosphorylation. These results …


Synchronous Opening And Closing Motions Are Essential For Camp-Dependent Protein Kinase A Signaling, Atul K. Srivastava, Leanna R. Mcdonald, Alessandro Cembran, Jonggul Kim, Larry R. Masterson, Christopher L. Mcclendon, Susan S. Taylor, Gianluigi Veglia Nov 2014

Synchronous Opening And Closing Motions Are Essential For Camp-Dependent Protein Kinase A Signaling, Atul K. Srivastava, Leanna R. Mcdonald, Alessandro Cembran, Jonggul Kim, Larry R. Masterson, Christopher L. Mcclendon, Susan S. Taylor, Gianluigi Veglia

Larry Masterson

Conformational fluctuations play a central role in enzymatic catalysis. However, it is not clear how the rates and the coordination of the motions affect the different catalytic steps. Here, we used NMR spectroscopy to analyze the conformational fluctuations of the catalytic subunit of the cAMP-dependent protein kinase (PKA-C), a ubiquitous enzyme involved in a myriad of cell signaling events. We found that the wild-type enzyme undergoes synchronous motions involving several structural elements located in the small lobe of the kinase, which is responsible for nucleotide binding and release. In contrast, a mutation (Y204A) located far from the active site desynchronizes the opening and …


A Nmr Experiment For Simultaneous Correlations Of Valine And Leucine/Isoleucine Methyls With Carbonyl Chemical Shifts In Proteins, Vitali Tugarinov, Vincenzo Venditti, G. Marius Clore Jan 2014

A Nmr Experiment For Simultaneous Correlations Of Valine And Leucine/Isoleucine Methyls With Carbonyl Chemical Shifts In Proteins, Vitali Tugarinov, Vincenzo Venditti, G. Marius Clore

Vincenzo Venditti

A methyl-detected ‘out-and-back’ NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ileδ1, Leuδ and Valγ (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of 13Cα, 13Cβ and 13CO are known from prior NMR studies and where some losses in …


Structural Basis For Enzyme I Inhibition By Α-Ketoglutarate, Vincenzo Venditti, Rodolfo Ghirlando, G. Marius Clore Jan 2013

Structural Basis For Enzyme I Inhibition By Α-Ketoglutarate, Vincenzo Venditti, Rodolfo Ghirlando, G. Marius Clore

Vincenzo Venditti

Creating new bacterial strains in which carbon and nitrogen metabolism are uncoupled is potentially very useful for optimizing yields of microbial produced chemicals from renewable carbon sources. However, the mechanisms that balance carbon and nitrogen consumption in bacteria are poorly understood. Recently, α-ketoglutarate (αKG), the carbon substrate for ammonia assimilation, has been observed to inhibit Escherichia coli enzyme I (EI), the first component of the bacterial phosphotransferase system (PTS), thereby providing a direct biochemical link between central carbon and nitrogen metabolism. Here we investigate the EI-αKG interaction by NMR and enzymatic assays. We show that αKG binds with a KD …


Structure, Dynamics And Biophysics Of The Cytoplasmic Protein–Protein Complexes Of The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System, Vincenzo Venditti Jan 2013

Structure, Dynamics And Biophysics Of The Cytoplasmic Protein–Protein Complexes Of The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System, Vincenzo Venditti

Vincenzo Venditti

The bacterial phosphotransferase system (PTS) couples phosphoryl transfer, via a series of bimolecular protein–protein interactions, to sugar transport across the membrane. The multitude of complexes in the PTS provides a paradigm for studying protein interactions, and for understanding how the same binding surface can specifically recognize a diverse array of targets. Fifteen years of work aimed at solving the solution structures of all soluble protein–protein complexes of the PTS has served as a test bed for developing NMR and integrated hybrid approaches to study larger complexes in solution and to probe transient, spectroscopically invisible states, including encounter complexes. We review …


Structure And Dynamics Of A Primordial Catalytic Fold Generated By In Vitro Evolution, Fa-An Chao, Aleardo Morelli, John C. Haugner Iii, Lewis Churchfield, Lei Shi, Larry R. Masterson, Ritimukta Sarangi, Gianluigi Veglia, Burckhard Seelig Dec 2012

Structure And Dynamics Of A Primordial Catalytic Fold Generated By In Vitro Evolution, Fa-An Chao, Aleardo Morelli, John C. Haugner Iii, Lewis Churchfield, Lei Shi, Larry R. Masterson, Ritimukta Sarangi, Gianluigi Veglia, Burckhard Seelig

Larry Masterson

Engineering functional protein scaffolds capable of carrying out chemical catalysis is a major challenge in enzyme design. Starting from a noncatalytic protein scaffold, we recently generated a new RNA ligase by in vitro directed evolution. This artificial enzyme lost its original fold and adopted an entirely new structure with substantially enhanced conformational dynamics, demonstrating that a primordial fold with suitable flexibility is sufficient to carry out enzymatic function.


Lack Of Association Between Gly82ser, 1704g/T And 2184a/G Of Rage Gene Polymorphisms And Retinopathy Susceptibility In Malaysian Diabetic Patients, Rozaida @ Poh Yuen Ying Jan 2012

Lack Of Association Between Gly82ser, 1704g/T And 2184a/G Of Rage Gene Polymorphisms And Retinopathy Susceptibility In Malaysian Diabetic Patients, Rozaida @ Poh Yuen Ying

Rozaida @ Poh Yuen Ying

Diabetic retinopathy is the most common diabetic eye disease, occurring in about 60% of type 2 diabetic patients. Other than known clinical risk factors, the influence of genes has been suggested as part of the development of diabetic retinopathy. We investigated the association of Gly82Ser, 1704G/T and 2184A/G polymorphisms in the RAGE gene with retinopathy in type 2 diabetic patients in Malaysia. Ninety-eight unrelated retinopathy patients and 185 unrelated healthy controls from all over Malaysia were recruited in this study. The allele and genotype frequencies of the three gene polymorphisms were investigated using PCR-RFLP. The allele frequency of the three …


Igf2bp2 Alternative Variants Associated With Glutamic Acid Decarboxylase Antibodies Negative Diabetes In Malaysian Subjects, Rozaida @ Poh Yuen Ying Jan 2012

Igf2bp2 Alternative Variants Associated With Glutamic Acid Decarboxylase Antibodies Negative Diabetes In Malaysian Subjects, Rozaida @ Poh Yuen Ying

Rozaida @ Poh Yuen Ying

Background: The association of Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) common variants (rs4402960 and rs1470579) with type 2 diabetes (T2D) has been performed in different populations. The aim of this study was to evaluate the association of alternative variants of IGF2BP2; rs6777038, rs16860234 and rs7651090 with glutamic acid decarboxylase antibodies (GADA) negative diabetes in Malaysian Subjects. Methods/Principal Findings: IGF2BP2; rs6777038, rs16860234 and rs7651090 single nucleotide polymorphisms (SNPs) were genotyped in 1107 GADA negative diabetic patients and 620 control subjects of Asian from Malaysia. The additive genetic model adjusted for age, race, gender and BMI showed that alternative variants; …


Paraoxonase 1 Status In Keratoconus: A Preliminary Study Of Activity And Polymorphism, Rozaida @ Poh Yuen Ying Jan 2012

Paraoxonase 1 Status In Keratoconus: A Preliminary Study Of Activity And Polymorphism, Rozaida @ Poh Yuen Ying

Rozaida @ Poh Yuen Ying

OBJECTIVE: To determine the activity of paraoxonase 1 (PON1) in keratoconus in a Malaysian population in comparison with non-keratoconic subjects. METHODS: Clinical eye examinations were performed on patients with keratoconus and non-keratoconic subjects after questionnaires were completed. Blood samples were collected and subjected to spectrophotometry analysis of paraoxonase and diazoxonase activities for the determination of the status of PON1 of every individual. RESULTS: Of the 11 keratoconic patients and 55 non-keratoconic control samples collected, eight patients of Indian ethnicity were keratoconic (73%), whereas 33 non-Indians were non-keratoconic (60%; p = 0.047). Paraoxonase activity was lower in Indians compared to the …


Conformational Selection And Substrate Binding Regulate The Monomer/Dimer Equilibrium Of The C-Terminal Domain Of Escherichia Coli Enzyme I, Vincenzo Venditti, G. Marius Clore Jan 2012

Conformational Selection And Substrate Binding Regulate The Monomer/Dimer Equilibrium Of The C-Terminal Domain Of Escherichia Coli Enzyme I, Vincenzo Venditti, G. Marius Clore

Vincenzo Venditti

The bacterial phosphotransferase system (PTS) is a signal transduction pathway that couples phosphoryl transfer to active sugar transport across the cell membrane. The PTS is initiated by the binding of phosphoenolpyruvate (PEP) to the C-terminal domain (EIC) of enzyme I (EI), a highly conserved protein that is common to all sugar branches of the PTS. EIC exists in a dynamic monomer/dimer equilibrium that is modulated by ligand binding and is thought to regulate the overall PTS. Isolation of EIC has proven challenging, and conformational dynamics within the EIC domain during the catalytic cycle are still largely unknown. Here, we present …


Conformational Equilibrium Of N-Myristoylated Camp-Dependent Protein Kinase A By Molecular Dynamics Simulations, Alessandro Cembran, Larry R. Masterson, Christopher L. Mcclendon, Susan S. Taylor, Jiali Gao, Gianluigi Veglia Dec 2011

Conformational Equilibrium Of N-Myristoylated Camp-Dependent Protein Kinase A By Molecular Dynamics Simulations, Alessandro Cembran, Larry R. Masterson, Christopher L. Mcclendon, Susan S. Taylor, Jiali Gao, Gianluigi Veglia

Larry Masterson

The catalytic subunit of protein kinase A (PKA-C) is subject to several post- or cotranslational modifications that regulate its activity both spatially and temporally. Among those, N-myristoylation increases the kinase affinity for membranes and might also be implicated in substrate recognition and allosteric regulation. Here, we investigated the effects of N-myristoylation on the structure, dynamics, and conformational equilibrium of PKA-C using atomistic molecular dynamics simulations. We found that the myristoyl group inserts into the hydrophobic pocket and leads to a tighter packing of the A-helix against the core of the enzyme. As a result, the conformational dynamics of the A-helix …


Paraoxonase 1 Activity As A Predictor Of Cardiovascular Disease In Type 2 Diabetes, Rozaida @ Poh Yuen Ying Jan 2010

Paraoxonase 1 Activity As A Predictor Of Cardiovascular Disease In Type 2 Diabetes, Rozaida @ Poh Yuen Ying

Rozaida @ Poh Yuen Ying

The role of paraoxonase 1 in cardiovascular disease complications in type 2 diabetes mellitus is not fully understood. We studied paraoxonase activity towards paraoxon in 188 non-diabetic and 140 diabetic subjects using general linear models and univariate analysis. Adjusting for age revealed a reduction in activity towards paraoxon was associated with a significant increase in risk (p=0.023) for cardiovascular disease complications in diabetic patients. Multivariate analysis of two plasma measures of paraoxonase activity using paraoxon and diazoxon also showed reduced paraoxonase activity towards paraoxon was associated with a significant increase in risk (p=0.045) for cardiovascular disease complications in diabetic patients. …


Evaluation Of Polymorphism At Codon 192 Of Paraoxonase 1 On Its Kinetic Behavior, Rozaida @ Poh Yuen Ying Jan 2009

Evaluation Of Polymorphism At Codon 192 Of Paraoxonase 1 On Its Kinetic Behavior, Rozaida @ Poh Yuen Ying

Rozaida @ Poh Yuen Ying

Human paraoxonase 1 (PON1), a High-Density Lipoprotein (HDL)-associated esterase has been implicated in slowing down the development of atherosclerosis. In the present study, kinetic and inhibition studies on PON1 were conducted to assess three parameters: the Michaelis constant (KM) and maximal rate of metabolisme (Vmax) of paraoxonase and inhibition constant (Ki) of phenylacetate. Human paraoxonase 1 (PON1) activity was measured spectrophotometrically at 405 nm, using plasma samples in basal (without added NaCl) and salt-stimulated assays with 1 M NaCl. Inhibition studies were performed using phenylacetate as an inhibitor of PON1 in basal assays, pH 8.0. Estimates of KM and Vmax …


Measuring The Dynamic Surface Accessibility Of Rna With The Small Paramagnetic Molecule Tempol, Vincenzo Venditti, Neri Niccolai, Samuel E. Butcher Jan 2008

Measuring The Dynamic Surface Accessibility Of Rna With The Small Paramagnetic Molecule Tempol, Vincenzo Venditti, Neri Niccolai, Samuel E. Butcher

Vincenzo Venditti

The surface accessibility of macromolecules plays a key role in modulating molecular recognition events. RNA is a complex and dynamic molecule involved in many aspects of gene expression. However, there are few experimental methods available to measure the accessible surface of RNA. Here, we investigate the accessible surface of RNA using NMR and the small paramagnetic molecule TEMPOL. We investigated two RNAs with known structures, one that is extremely stable and one that is dynamic. For helical regions, the TEMPOL probing data correlate well with the predicted RNA surface, and the method is able to distinguish subtle variations in atom …


Discordance In The Paraoxonase (Pon1)-192qr Polymorphism, Rozaida @ Poh Yuen Ying Dec 2007

Discordance In The Paraoxonase (Pon1)-192qr Polymorphism, Rozaida @ Poh Yuen Ying

Rozaida @ Poh Yuen Ying

Paraoxonase (PON1) has been implicated to have a cardioprotective role, due to its physical attachment with high-density lipoprotein. PON1192QR is a variation of the PON1 gene, the R allele being a risk factor for cardiovascular disease. Kinetic studies resulting in a plot of paraoxon versus diazoxon hydrolysis rates may be used to accurately predict PON1192 geno-type. In this study, paraoxonase and diazoxonase activities in plasma were measured spec-trophotometrically using plasma while PCR-based PON1192 genotyping was performed us-ing polymerase chain reaction followed by restriction digestion. The two-substrate assay-derived genotypes were cross-referred with those determined by PCR-based genotyping. When results did not …


Anopheles Gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure And Inhibition, Erika Taylor, Agnes Rinaldo-Matthis, Lei Li, Mahmoud Ghanem, Keith Hazleton, M. Belen Cassera, Steven Almo, Vern Schramm Oct 2007

Anopheles Gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure And Inhibition, Erika Taylor, Agnes Rinaldo-Matthis, Lei Li, Mahmoud Ghanem, Keith Hazleton, M. Belen Cassera, Steven Almo, Vern Schramm

Erika A. Taylor, Ph.D.

The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for …


Ethnic Variations In Paraoxonase1 Polymorphism In The Malaysian Population, Rozaida @ Poh Yuen Ying Jan 2007

Ethnic Variations In Paraoxonase1 Polymorphism In The Malaysian Population, Rozaida @ Poh Yuen Ying

Rozaida @ Poh Yuen Ying

The role of high-density lipoprotein associated paraoxonase (PON) 1 in protection against oxidative stress associated with the development of complications in diabetes mellitus has been reported. Variations in the PON1 gene, 55LM and 192QR have been described in different populations. These variations are known to be risk factors for heart disease, especially the L and R alleles. We have investigated the prevalence of both polymorphisms in the Malaysian population comprising the three major ethnic groups: Malay, Chinese and Indian, using polymerase chain reaction followed by restriction endonuclease digestion. The results show the pooled frequencies of L and R alleles were …


Structure And Thermodynamics Of A Conserved U2 Snrna Domain From Yeast And Human, Dipali G. Sashital, Vincenzo Venditti, Courtney G. Angers, Gabriel Cornilescu, Samuel E. Butcher Jan 2007

Structure And Thermodynamics Of A Conserved U2 Snrna Domain From Yeast And Human, Dipali G. Sashital, Vincenzo Venditti, Courtney G. Angers, Gabriel Cornilescu, Samuel E. Butcher

Vincenzo Venditti

The spliceosome is a dynamic ribonucleoprotein complex responsible for the removal of intron sequences from pre-messenger RNA. The highly conserved 5′ end of the U2 small nuclear RNA (snRNA) makes key base-pairing interactions with the intron branch point sequence and U6 snRNA. U2 stem I, a stem–loop located in the 5′ region of U2, has been implicated in spliceosome assembly and may modulate the folding of the U2 and U6 snRNAs in the spliceosome active site. Here we present the NMR structures of U2 stem I from human and Saccharomyces cerevisiae. These sequences represent the two major classes of U2 …