Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Binding

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Chemicals and Drugs

Evidence Of Direct Interaction Between Cisplatin And The Caspase-Cleaved Prostate Apoptosis Response-4 Tumor Suppressor, Krishna K. Raut, Samjhana Pandey, Gyanendra Kharel, Steven M. Pascal Jan 2024

Evidence Of Direct Interaction Between Cisplatin And The Caspase-Cleaved Prostate Apoptosis Response-4 Tumor Suppressor, Krishna K. Raut, Samjhana Pandey, Gyanendra Kharel, Steven M. Pascal

Chemistry & Biochemistry Faculty Publications

Prostate apoptosis response-4 (Par-4) tumor suppressor protein has gained attention as a potential therapeutic target owing to its unique ability to selectively induce apoptosis in cancer cells, sensitize them to chemotherapy and radiotherapy, and mitigate drug resistance. It has recently been reported that Par-4 interacts synergistically with cisplatin, a widely used anticancer drug. However, the mechanistic details underlying this relationship remain elusive. In this investigation, we employed an array of biophysical techniques, including circular dichroism spectroscopy, dynamic light scattering, and UV–vis absorption spectroscopy, to characterize the interaction between the active caspase-cleaved Par-4 (cl-Par-4) fragment and cisplatin. Additionally, elemental analysis was …


The Effect Of Metalation On Antimicrobial Piscidins Imbedded In Normal And Oxidized Lipid Bilayers, Ana Dreab, Craig A. Bayse Jan 2023

The Effect Of Metalation On Antimicrobial Piscidins Imbedded In Normal And Oxidized Lipid Bilayers, Ana Dreab, Craig A. Bayse

Chemistry & Biochemistry Faculty Publications

Metalation of the N-terminal Amino Terminal Cu(II)- and Ni(II)-binding (ATCUN) motif may enhance the antimicrobial properties of piscidins. Molecular dynamics simulations of free and nickelated piscidins 1 and 3 (P1 and P3) were performed in 3 : 1 POPC/POPG and 2.6 : 1 : 0.4 POPC/POPG/aldo-PC bilayers (POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; aldo-PC, 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine) bilayer models. Nickel(II) binding decreases the conformation dynamics of the ATCUN motif and lowers the charge of the N-terminus to allow it to embed deeper in the bilayer without significantly changing the overall depth due to interactions of the charged half-helix …


Mechanism For Selective Binding Of Aromatic Compounds On Oxygen-Rich Graphene Nanosheets Based On Molecule Size/Polarity Matching, Heyun Fu, Bingyu Wang, Dongqiang Zhu, Zhicheng Zhou, Shidong Bao, Xiaolei Qu, Yong Guo, Lan Ling, Shourong Zheng, Pu Duan, Jingdong Mao, Klaus Schmidt-Rohr, Shu Tao, Pedro J.J. Alvarez Jan 2022

Mechanism For Selective Binding Of Aromatic Compounds On Oxygen-Rich Graphene Nanosheets Based On Molecule Size/Polarity Matching, Heyun Fu, Bingyu Wang, Dongqiang Zhu, Zhicheng Zhou, Shidong Bao, Xiaolei Qu, Yong Guo, Lan Ling, Shourong Zheng, Pu Duan, Jingdong Mao, Klaus Schmidt-Rohr, Shu Tao, Pedro J.J. Alvarez

Chemistry & Biochemistry Faculty Publications

Selective binding of organic compounds is the cornerstone of many important industrial and pharmaceutical applications. Here, we achieved highly selective binding of aromatic compounds in aqueous solution and gas phase by oxygen-enriched graphene oxide (GO) nanosheets via a previously unknown mechanism based on size matching and polarity matching. Oxygen-containing functional groups (predominately epoxies and hydroxyls) on the nongraphitized aliphatic carbons of the basal plane of GO formed highly polar regions that encompass graphitic regions slightly larger than the benzene ring. This facilitated size match–based interactions between small apolar compounds and the isolated aromatic region of GO, resulting in high binding …