Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

2024

Institution
Keyword
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Chemicals and Drugs

Modeling Sex-Specific Changes In Myocardial Fibrosis, Grace Martin May 2024

Modeling Sex-Specific Changes In Myocardial Fibrosis, Grace Martin

Chemical Engineering Undergraduate Honors Theses

Heart disease the leading cause of death for both men and women in the United States. Cardiac fibrosis, or accumulation of extracellular matrix proteins in the heart, can occur after a heart attack and increase the risk for further complications. Current treatments for heart disease do not include extracellular matrix regulators, partly due to the complicated signaling network responsible for the production of these proteins. By using a computational model of the signaling network in cardia fibroblasts, the relationship between particular molecules and downstream extracellular matrix production can be examined.

Biological sex is an important factor for cardiac health and …


The Purification And Thermal Stability Of The Peroxidase Enzyme In Cucurbita Moschata, Garen Hamner Apr 2024

The Purification And Thermal Stability Of The Peroxidase Enzyme In Cucurbita Moschata, Garen Hamner

Senior Honors Theses

Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide to water while oxidizing organic substrates and are valuable in spheres like industrial and medical applications and histochemistry. Limitations still exist in the use of the well-studied horseradish peroxidase for certain activities due to limitations like poor thermal stability, thus the search for novel peroxidases that can overcome these limitations is an active area of research. Butternut squash peroxidase (Cucurbita moschata) (BSP) shows promise due to significant activity being found in the skin and apparent enhanced thermal stability, but an efficient purification scheme for it is lacking, as well as …


Why Your Clothes Could Be Killing You: The Detection Of Bpa In Clothing Using Fluorescence Spectrophotometry, Bella Bevel Apr 2024

Why Your Clothes Could Be Killing You: The Detection Of Bpa In Clothing Using Fluorescence Spectrophotometry, Bella Bevel

Scholars Day Conference

Bisphenol-A, better known as BPA, is a carcinogenic compound found in many plastic-containing products due to its ability to add rigidity and strength to the plastic. However, BPA has been found in a wide variety of products not traditionally thought of as “plastic” including feminine hygiene products, printer receipts, and even clothing. Clothing containing a polyester/spandex blend, common in athletic wear, contains BPA, whereas traditional cotton clothing does not. Using flourospectroscopy, the presence of BPA in these types of clothing was confirmed, as well as measured over time. Strips of clothing containing polyester and spandex blends were submerged in a …


The Mental Health And Developmental Effects Of Bisphenol-A, Maryann Rettig Apr 2024

The Mental Health And Developmental Effects Of Bisphenol-A, Maryann Rettig

Scholars Day Conference

My directed study focuses on the mental health and developmental effects of bisphenol-A (BPA) on individuals in close contact with the chemical product. BPA is an organic chemical produced in large quantities that is used in the production of many polycarbonate plastics, feminine hygiene products, and epoxy resins that coat some metal food cans. Because of it being everywhere, BPA often leaches dermally and orally into the human body. The physical effects of BPA have been known and observed for years. However, its mental health effects specifically are not as commonly known. Therefore, in my directed study I would be …


Killing Cancer: Manipulating Hydrophobic Vanadium Complexes To Improve Anti-Cancer Activity, Levi Ausherman, Debbie C. Crans, Peter A. Lay, Maggi Braasch-Turi Apr 2024

Killing Cancer: Manipulating Hydrophobic Vanadium Complexes To Improve Anti-Cancer Activity, Levi Ausherman, Debbie C. Crans, Peter A. Lay, Maggi Braasch-Turi

SACAD: John Heinrichs Scholarly and Creative Activity Days

Hydrophobic vanadium complexes have recently shown improved anti-cancer activities compared to cisplatin. The hydrophobicity and anti-proliferative activity of [VO(Hshed)(dtb)] ([Hshed= N-(salicylideneaminato)-N’-(2-hydroxyethyl)-1,2-ethanediamine and dtb= 3,5-di(tert-butyl)catechol)]) have inspired the development of a library of hydrophobic vanadium complexes. Increasing the steric bulk of the catechol ligand has been shown to have a direct impact on hydrophobicity and anti-proliferative activities. Currently at Fort Hays State University, the Braasch-Turi group is synthesizing VO(HSHED)(dtb) to build up material to support the chemical analysis and biological assay performed by our collaborators at Colorado State University and the University of Sydney, Australia, respectively. In the future, we plan …


Accurate Characterization Of Binding Kinetics And Allosteric Mechanisms For The Hsp90 Chaperone Inhibitors Using Ai-Augmented Integrative Biophysical Studies, Chao Xu, Xianglei Zhang, Lianghao Zhao, Gennady M. Verkhivker, Fang Bai Apr 2024

Accurate Characterization Of Binding Kinetics And Allosteric Mechanisms For The Hsp90 Chaperone Inhibitors Using Ai-Augmented Integrative Biophysical Studies, Chao Xu, Xianglei Zhang, Lianghao Zhao, Gennady M. Verkhivker, Fang Bai

Mathematics, Physics, and Computer Science Faculty Articles and Research

The binding kinetics of drugs to their targets are gradually being recognized as a crucial indicator of the efficacy of drugs in vivo, leading to the development of various computational methods for predicting the binding kinetics in recent years. However, compared with the prediction of binding affinity, the underlying structure and dynamic determinants of binding kinetics are more complicated. Efficient and accurate methods for predicting binding kinetics are still lacking. In this study, quantitative structure–kinetics relationship (QSKR) models were developed using 132 inhibitors targeting the ATP binding domain of heat shock protein 90α (HSP90α) to predict the dissociation rate …


Methionyl-Trna Synthetase Synthetic And Proofreading Activities Are Determinants Of Antibiotic Persistence, Whitney N. Wood, Miguel Angel Rubio, Lorenzo Eugenio Leiva, Gregory J. Phillips, Michael Ibba Mar 2024

Methionyl-Trna Synthetase Synthetic And Proofreading Activities Are Determinants Of Antibiotic Persistence, Whitney N. Wood, Miguel Angel Rubio, Lorenzo Eugenio Leiva, Gregory J. Phillips, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial antibiotic persistence is a phenomenon where bacteria are exposed to an antibiotic and the majority of the population dies while a small subset enters a low metabolic, persistent, state and are able to survive. Once the antibiotic is removed the persistent population can resuscitate and continue growing. Several different molecular mechanisms and pathways have been implicated in this phenomenon. A common mechanism that may underly bacterial antibiotic persistence is perturbations in protein synthesis. To investigate this mechanism, we characterized four distinct metG mutants for their ability to increase antibiotic persistence. Two metG mutants encode changes near the catalytic site …


Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Β-Sheets Mediate The Conformational Change And Allosteric Signal Transmission Between The Aslov2 Termini, Sian Xiao, Mayar Terek Ibrahim, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao Mar 2024

Β-Sheets Mediate The Conformational Change And Allosteric Signal Transmission Between The Aslov2 Termini, Sian Xiao, Mayar Terek Ibrahim, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

Avena sativa phototropin 1 light-oxygen-voltage 2 domain (AsLOV2) is a model protein of Per-Arnt-Sim (PAS) superfamily, characterized by conformational changes in response to external environmental stimuli. This conformational change begins with the unfolding of the N-terminal A'α helix in the dark state followed by the unfolding of the C-terminal Jα helix. The light state is characterized by the unfolded termini and the subsequent modifications in hydrogen bond patterns. In this photoreceptor, β-sheets are identified as crucial components for mediating allosteric signal transmission between the two termini. Through combined experimental and computational investigations, the Hβ …


Purification And Isolation Of Α-Chloro-Β-Lactone Precursor Molecules, Matthew Ellis Feb 2024

Purification And Isolation Of Α-Chloro-Β-Lactone Precursor Molecules, Matthew Ellis

ASPIRE 2024

This research investigates the synthesis of α-chloro-β-lactone molecules, focusing on the production, isolation, and purification of two precursor compounds from chloroacetic acid and substituted benzaldehydes. While multiple methods were explored, including EDC, DIC, and DCC catalysis, DCC proved to be most effective in producing higher yields. However, challenges in purification arose due to the formation of byproducts, particularly with DCC, prompting further investigation for efficient extraction and purification techniques. DCC, however, shows a promising route for α-chloro-β-lactone synthesis, despite purification complexities.


Chemical Synthesis Of Sensitive Dna, Komal Chillar Jan 2024

Chemical Synthesis Of Sensitive Dna, Komal Chillar

Dissertations, Master's Theses and Master's Reports

Over the past decades, researchers have tried various chemical methods to synthesize modified oligodeoxynucleotides (ODNs, i.e. short segments of DNAs). Traditional ODN synthesis methods require strong basic, and nucleophilic conditions for the deprotection and cleavage of the ODN from the solid support. However, the sensitive ODNs containing labile functionalities are vulnerable to such harsh conditions. Sensitive ODNs have a wide range of applications in research and pharmaceuticals. To synthesize sensitive ODNs, researchers devised different strategies but no practical methods have been developed. To overcome these challenges, we developed alkyl Dim alkyl Dmoc technology. This innovative technology uses weakly basic and …


Evidence Of Direct Interaction Between Cisplatin And The Caspase-Cleaved Prostate Apoptosis Response-4 Tumor Suppressor, Krishna K. Raut, Samjhana Pandey, Gyanendra Kharel, Steven M. Pascal Jan 2024

Evidence Of Direct Interaction Between Cisplatin And The Caspase-Cleaved Prostate Apoptosis Response-4 Tumor Suppressor, Krishna K. Raut, Samjhana Pandey, Gyanendra Kharel, Steven M. Pascal

Chemistry & Biochemistry Faculty Publications

Prostate apoptosis response-4 (Par-4) tumor suppressor protein has gained attention as a potential therapeutic target owing to its unique ability to selectively induce apoptosis in cancer cells, sensitize them to chemotherapy and radiotherapy, and mitigate drug resistance. It has recently been reported that Par-4 interacts synergistically with cisplatin, a widely used anticancer drug. However, the mechanistic details underlying this relationship remain elusive. In this investigation, we employed an array of biophysical techniques, including circular dichroism spectroscopy, dynamic light scattering, and UV–vis absorption spectroscopy, to characterize the interaction between the active caspase-cleaved Par-4 (cl-Par-4) fragment and cisplatin. Additionally, elemental analysis was …


Cumulative Distribution Function And Spatially Resolved Surface-Enhanced Raman Spectroscopy For The Quantitative Analysis Of Emtricitabine, Jana Hrncirova, Marguerite R. Butler, Sucharita Dutta, Meredith R. Clark, John B. Cooper Jan 2024

Cumulative Distribution Function And Spatially Resolved Surface-Enhanced Raman Spectroscopy For The Quantitative Analysis Of Emtricitabine, Jana Hrncirova, Marguerite R. Butler, Sucharita Dutta, Meredith R. Clark, John B. Cooper

Chemistry & Biochemistry Faculty Publications

Surface-enhanced Raman spectroscopy (SERS) has exceptional analytical sensitivity and selectivity. However, SERS irreproducibility presents an obstacle when using it for precise quantitative measurements. In this study, colloidal nanoparticles evaporated to dryness are used as a SERS active surface for the detection of the HIV drug emtricitabine (FTC; trade name Emtriva). Despite the irreproducibility of the SERS resulting from the stochastic process of evaporation, using a SERS scanning instrument, the SERS enhancement factors of spatially resolved spectra have a well-defined distribution of signals for a given analyte concentration. This distribution follows a power law function ranging from weak (very abundant signals) …