Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Chemicals and Drugs

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Utilizing Ultra-Performance Chromatography High-Resolution Mass Spectrometry To Investigate Fatty Acid Mediated Antibiotic Tolerance, Brittni Woodall May 2023

Utilizing Ultra-Performance Chromatography High-Resolution Mass Spectrometry To Investigate Fatty Acid Mediated Antibiotic Tolerance, Brittni Woodall

Doctoral Dissertations

The lipid membrane is the first component necessary to sustain life. To maintain homeostasis, segregate cellular machinery, provide protection from the environment, and reproduce, an organism must establish a boundary in which the processes can occur. Throughout the last two decades, research has propelled our knowledge of lipid membranes much beyond original hypotheses. Once thought of to be static and uniform, the understanding of the lipid membrane has evolved to encompass a structure that is responsive, unique, and intricately constructed by the organism itself. By chance or by choice, organisms adapt the lipid membrane according to the environment for which …


Development Of Surface-Modified Liposomes For Drug Delivery Applications, Megan Louise Qualls May 2023

Development Of Surface-Modified Liposomes For Drug Delivery Applications, Megan Louise Qualls

Doctoral Dissertations

Liposomes are spherical vesicles composed of a lipid bilayer membrane that assembles around an internal aqueous core. This duality gives liposomes the ability to encapsulate both hydrophobic cargo within the lipid bilayer and hydrophilic cargo in the aqueous core, making them versatile molecular carriers for drug delivery. Liposome platforms have many advantages and are promising drug delivery carriers, and research is ongoing to improve their designs for continued clinical applications. Many liposome types have been developed, but further work is needed to improve surface modification, site-specific targeting, and triggered cargo release in order to further the therapeutic applications of these …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan Mar 2022

Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan

Doctoral Dissertations

The study of protein higher-order structures is vital because it is closely related to the investigation of protein folding, aggregation, interaction and protein therapeutics. Consequently, numerous biochemical and biophysical tools have been developed to study protein higher-order structures in many different situations. The combination of covalent labeling (CL) and mass spectrometry (MS) has emerged as a powerful tool for studying protein structures and offers many advantages over other traditional techniques, such as better structural coverage, high throughput, high sensitivity, and the ability to study proteins in mixtures. This dissertation focuses on diethylpyrocarbonate (DEPC) as an effective CL reagent that can …


Design Of Resposive Oligomeric And Polymeric Interfaces For Sensing And Controlled Release Applications, . Manisha Sep 2021

Design Of Resposive Oligomeric And Polymeric Interfaces For Sensing And Controlled Release Applications, . Manisha

Doctoral Dissertations

Nature has designed magnificent responsive systems by constructing several interacting molecular level networks for the recognition and propagation of chemical and biochemical information. One of the eminent characteristics of these systems is their capability to quickly transduce molecular scale recognition events into macroscopic or visually observable responses. Inspired by these systems present in nature, we became interested in developing artificial responsive systems with similar capabilities. This dissertation will feature four such systems that employ amphiphilic oligomers and polymers which were chosen as the scaffolds because of their high thermodynamic stability, low critical aggregation concentrations, convenient handles to incorporate functional group …


Structural Analysis Of Protein Therapeutics Using Covalent Labeling – Mass Spectrometry, Patanachai Limpikirati Jul 2020

Structural Analysis Of Protein Therapeutics Using Covalent Labeling – Mass Spectrometry, Patanachai Limpikirati

Doctoral Dissertations

Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein’s structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for …


Protein Detection And Structural Characterization By Mass Spectrometry Using Supramolecular Assemblies And Small Molecules, Bo Zhao Oct 2019

Protein Detection And Structural Characterization By Mass Spectrometry Using Supramolecular Assemblies And Small Molecules, Bo Zhao

Doctoral Dissertations

Mass spectrometry (MS) has played an increasingly prominent role in proteomics and structure biology because it shows superior capabilities in identification, quantification and structural characterization of proteins. To realize its full potential in protein analysis, significant progress has been made in developing innovative techniques and reagents that can couple to MS detection. This dissertation demonstrates the use of polymeric supramolecular assemblies for enhanced protein detection in complex biological mixtures by MS. An amphiphilic random co-polymer scaffold is developed to form functional supramolecular assemblies for protein/ peptide enrichment. The influences of charge density and functional group pKa on host-guest interactions …


Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres Aug 2014

Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres

Doctoral Dissertations

Proteins have the capacity to bind specific sets of compounds known as ligands, these are small molecules with a recurrent theme in their molecular design that is a characteristic exploited here to (i) identify particular affinities of small molecules for proteins with the aim of using them as ligands, inhibitors, or targeting moieties in more complex systems by means of a methodology that screens small molecules based on protein affinity; (ii) decorate a self-assembling supramolecular system at different positions, making it responsive to a complementary protein with the aim of exploring differences in disassembly and sensitivity of the release of …


Design And Synthesis Of Novel Sultams As Non-Nucleoside Inhibitors Of Hiv Reverse Transcriptase, Brian Chadwick Lecroix Dec 2013

Design And Synthesis Of Novel Sultams As Non-Nucleoside Inhibitors Of Hiv Reverse Transcriptase, Brian Chadwick Lecroix

Doctoral Dissertations

The compound 2-methyl-3-phenyl-2,3-dihydro-1,2-benzisothiazole 1,1-dioxide (NSC 108406) was identified as an HIV-1 reverse transcriptase inhibitor by the National Cancer Institute. Using this lead, the Baker group has developed a series of analogues with various groups at the 3-position that show a spectrum of biological activities. In the end, the substituents used could not compare to the biological activity of the inhibitor efavirenz (Sustiva® [trademark]), and so it was decided to synthesize sultams with alkylethynyl substituents at the 3-position of the sultams in an attempt to mimic the activity of efavirenz.

Previous research analyzed the proposed novel sultams in the modeling …