Open Access. Powered by Scholars. Published by Universities.®

Anatomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Anatomy

Bioenergetic Functions In Subpopulations Of Heart Mitochondria Are Preserved In A Non-Obese Type 2 Diabetes Rat Model (Goto-Kakizaki), Nicola Lai, C. M. Kummitha, F. Loy, R. Isola, C. L. Hoppel Jan 2020

Bioenergetic Functions In Subpopulations Of Heart Mitochondria Are Preserved In A Non-Obese Type 2 Diabetes Rat Model (Goto-Kakizaki), Nicola Lai, C. M. Kummitha, F. Loy, R. Isola, C. L. Hoppel

Electrical & Computer Engineering Faculty Publications

A distinct bioenergetic impairment of heart mitochondrial subpopulations in diabetic cardiomyopathy is associated with obesity; however, many type 2 diabetic (T2DM) patients with high-risk for cardiovascular disease are not obese. In the absence of obesity, it is unclear whether bioenergetic function in the subpopulations of mitochondria is affected in heart with T2DM. To address this issue, a rat model of non-obese T2DM was used to study heart mitochondrial energy metabolism, measuring bioenergetics and enzyme activities of the electron transport chain (ETC). Oxidative phosphorylation in the presence of substrates for ETC and ETC activities in both populations of heart mitochondria in …


Context Aware Deep Learning For Brain Tumor Segmentation, Subtype Classification, And Survival Prediction Using Radiology Images, Linmin Pei, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin Jan 2020

Context Aware Deep Learning For Brain Tumor Segmentation, Subtype Classification, And Survival Prediction Using Radiology Images, Linmin Pei, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

A brain tumor is an uncontrolled growth of cancerous cells in the brain. Accurate segmentation and classification of tumors are critical for subsequent prognosis and treatment planning. This work proposes context aware deep learning for brain tumor segmentation, subtype classification, and overall survival prediction using structural multimodal magnetic resonance images (mMRI). We first propose a 3D context aware deep learning, that considers uncertainty of tumor location in the radiology mMRI image sub-regions, to obtain tumor segmentation. We then apply a regular 3D convolutional neural network (CNN) on the tumor segments to achieve tumor subtype classification. Finally, we perform survival prediction …


Deep Learning With Context Encoding For Semantic Brain Tumor Segmentation And Patient Survival Prediction, Linmin Pei, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin Jan 2020

Deep Learning With Context Encoding For Semantic Brain Tumor Segmentation And Patient Survival Prediction, Linmin Pei, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

One of the most challenging problems encountered in deep learning-based brain tumor segmentation models is the misclassification of tumor tissue classes due to the inherent imbalance in the class representation. Consequently, strong regularization methods are typically considered when training large-scale deep learning models for brain tumor segmentation to overcome undue bias towards representative tissue types. However, these regularization methods tend to be computationally exhaustive, and may not guarantee the learning of features representing all tumor tissue types that exist in the input MRI examples. Recent work in context encoding with deep CNN models have shown promise for semantic segmentation of …


Efficacy Of Radiomics And Genomics In Predicting Tp53 Mutations In Diffuse Lower Grade Glioma, Zeina A. Shboul, Khan Iftekharuddin Jan 2020

Efficacy Of Radiomics And Genomics In Predicting Tp53 Mutations In Diffuse Lower Grade Glioma, Zeina A. Shboul, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

An updated classification of diffuse lower-grade gliomas is established in the 2016 World Health Organization Classification of Tumors of the Central Nervous System based on their molecular mutations such as TP53 mutation. This study investigates machine learning methods for TP53 mutation status prediction and classification using radiomics and genomics features, respectively. Radiomics features represent patients' age and imaging features that are extracted from conventional MRI. Genomics feature is represented by patients’ gene expression using RNA sequencing. This study uses a total of 105 LGG patients, where the patient dataset is divided into a training set (80 patients) and testing set …