Open Access. Powered by Scholars. Published by Universities.®

Anatomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Anatomy

The Paradox Of Pulmonary Vascular Resistance: Restoration Of Pulmonary Capillary Recruitment As A Sine Qua Non For True Therapeutic Success In Pulmonary Arterial Hypertension, David Langleben, Stylianos E. Orfanos, Benjamin D. Fox, Nathan Messas, Michele Giovinazzo, John D. Catravas Jan 2022

The Paradox Of Pulmonary Vascular Resistance: Restoration Of Pulmonary Capillary Recruitment As A Sine Qua Non For True Therapeutic Success In Pulmonary Arterial Hypertension, David Langleben, Stylianos E. Orfanos, Benjamin D. Fox, Nathan Messas, Michele Giovinazzo, John D. Catravas

Bioelectrics Publications

Exercise-induced increases in pulmonary blood flow normally increase pulmonary arterial pressure only minimally, largely due to a reserve of pulmonary capillaries that are available for recruitment to carry the flow. In pulmonary arterial hypertension, due to precapillary arteriolar obstruction, such recruitment is greatly reduced. In exercising pulmonary arterial hypertension patients, pulmonary arterial pressure remains high and may even increase further. Current pulmonary arterial hypertension therapies, acting principally as vasodilators, decrease calculated pulmonary vascular resistance by increasing pulmonary blood flow but have a minimal effect in lowering pulmonary arterial pressure and do not restore significant capillary recruitment. Novel pulmonary arterial hypertension …


The Heat Shock Protein 90 Inhibitor, At13387, Protects The Alveolo-Capillary Barrier And Prevents Hci-Induced Chronic Lung Injury And Pulmonary Fibrosis, Ruben M.L. Colunga Biancatelli, Pavel Solopov, Christiana Dimitropoulou, Betsy Gregory, Tierney Day, John D. Catravas Jan 2022

The Heat Shock Protein 90 Inhibitor, At13387, Protects The Alveolo-Capillary Barrier And Prevents Hci-Induced Chronic Lung Injury And Pulmonary Fibrosis, Ruben M.L. Colunga Biancatelli, Pavel Solopov, Christiana Dimitropoulou, Betsy Gregory, Tierney Day, John D. Catravas

Bioelectrics Publications

Hydrochloric acid (HCl) exposure causes asthma-like conditions, reactive airways dysfunction syndrome, and pulmonary fibrosis. Heat Shock Protein 90 (HSP90) is a molecular chaperone that regulates multiple cellular processes. HSP90 inhibitors are undergoing clinical trials for cancer and are also being studied in various pre-clinical settings for their anti-inflammatory and anti-fibrotic effects. Here we investigated the ability of the heat shock protein 90 (HSP90) inhibitor AT13387 to prevent chronic lung injury induced by exposure to HCl in vivo and its protective role in the endothelial barrier in vitro. We instilled C57Bl/6J mice with 0.1N HCl (2 µL/g body weight, intratracheally) and …


Endothelial Cell-Derived Extracellular Vesicles Impair The Angiogenic Response Of Coronary Artery Endothelial Cells, Nigeste Carter, Allison H. Mathiesen, Noel Miller, Michael Brown, Ruben M.L. Colunga Biancatelli, John D. Catravas, Anca D. Dobrian Jan 2022

Endothelial Cell-Derived Extracellular Vesicles Impair The Angiogenic Response Of Coronary Artery Endothelial Cells, Nigeste Carter, Allison H. Mathiesen, Noel Miller, Michael Brown, Ruben M.L. Colunga Biancatelli, John D. Catravas, Anca D. Dobrian

Bioelectrics Publications

Cardiovascular disease (CVD) is the most prominent cause of death of adults in the United States with coronary artery disease being the most common type of CVD. Following a myocardial event, the coronary endothelium plays an important role in the recovery of the ischemic myocardium. Specifically, endothelial cells (EC) must be able to elicit a robust angiogenic response necessary for tissue revascularization and repair. However, local or distant cues may prevent effective revascularization. Extracellular vesicles (EV) are produced by all cells and endothelium is a rich source of EVs that have access to the main circulation thereby potentially impacting local …


How To Alleviate Cardiac Injury From Electric Shocks At The Cellular Level, Pamela W. Sowa, Aleksander S. Kiełbik, Andrei G. Pakhomov, Emily Gudvangen, Uma Mangalanathan, Volker Adams, Olga N. Pakhomova Jan 2022

How To Alleviate Cardiac Injury From Electric Shocks At The Cellular Level, Pamela W. Sowa, Aleksander S. Kiełbik, Andrei G. Pakhomov, Emily Gudvangen, Uma Mangalanathan, Volker Adams, Olga N. Pakhomova

Bioelectrics Publications

Electric shocks, the only effective therapy for ventricular fibrillation, also electroporate cardiac cells and contribute to the high-mortality post-cardiac arrest syndrome. Copolymers such as Poloxamer 188 (P188) are known to preserve the membrane integrity and viability of electroporated cells, but their utility against cardiac injury from cardiopulmonary resuscitation (CPR) remains to be established. We studied the time course of cell killing, mechanisms of cell death, and protection with P188 in AC16 human cardiomyocytes exposed to micro- or nanosecond pulsed electric field (μsPEF and nsPEF) shocks. A 3D printer was customized with an electrode holder to precisely position electrodes orthogonal to …


Cardioporation Enhances Myocardial Gene Expression In Rat Heart, Carly Boye, Sezgi Arpag, Nina Burcus, Cathryn Lundberg, Scott Declemente, Richard Heller, Michael Francis, Anna Bulysheva Jan 2021

Cardioporation Enhances Myocardial Gene Expression In Rat Heart, Carly Boye, Sezgi Arpag, Nina Burcus, Cathryn Lundberg, Scott Declemente, Richard Heller, Michael Francis, Anna Bulysheva

Bioelectrics Publications

Damage from myocardial infarction (MI) and subsequent heart failure are serious public health concerns. Current clinical treatments and therapies to treat MI damage largely do not address the regeneration of cardiomyocytes. In a previous study, we established that it is possible to promote regeneration of cardiac muscle with vascular endothelial growth factor B gene delivery directly to the ischemic myocardium. In the current study we aim to optimize cardioporation parameters to increase expression efficiency by varying electrode configuration, applied voltage, pulse length, and plasmid vector size. By using a surface monopolar electrode, optimized pulsing conditions and reducing vector size, we …


Gene Electro Transfer Of Plasmid Encoding Vascular Endothelial Growth Factor For Enhanced Expression And Perfusion In The Ischemic Swine Heart, Barbara Y. Hargrave, Robert Strange Jr., Sagar Navare, Michael Stratton, Niculina Burcus, Len Murray, Cathryn Lundberg, Anna A. Bulysheva, Fanying Li, Richard Heller Dec 2014

Gene Electro Transfer Of Plasmid Encoding Vascular Endothelial Growth Factor For Enhanced Expression And Perfusion In The Ischemic Swine Heart, Barbara Y. Hargrave, Robert Strange Jr., Sagar Navare, Michael Stratton, Niculina Burcus, Len Murray, Cathryn Lundberg, Anna A. Bulysheva, Fanying Li, Richard Heller

Bioelectrics Publications

Myocardial ischemia can damage heart muscle and reduce the heart's pumping efficiency. This study used an ischemic swine heart model to investigate the potential for gene electro transfer of a plasmid encoding vascular endothelial growth factor for improving perfusion and, thus, for reducing cardiomyopathy following acute coronary syndrome. Plasmid expression was significantly greater in gene electro transfer treated tissue compared to injection of plasmid encoding vascular endothelial growth factor alone. Higher gene expression was also seen in ischemic versus non-ischemic groups with parameters 20 Volts (p