Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Doctoral Dissertations

Life Sciences

Articles 1 - 2 of 2

Full-Text Articles in Analytical, Diagnostic and Therapeutic Techniques and Equipment

Investigating The Regulation Of Indole-3-Acetic Acid Production By The Plant Associated Microbe Pantoea Sp. Yr343, Kasey Noel Estenson Dec 2017

Investigating The Regulation Of Indole-3-Acetic Acid Production By The Plant Associated Microbe Pantoea Sp. Yr343, Kasey Noel Estenson

Doctoral Dissertations

The auxin indole-3-acetic acid (IAA) plays a central role in plant growth and development and many plant-associated microbes produce IAA. Several IAA biosynthetic pathways have been identified in microbes which use the precursor tryptophan. Pantoea sp. YR343, which was isolated from the Populus deltoides rhizosphere, is a robust plant root colonizer that produces IAA. Using genomic and metabolomics analyses, we predicted that the indole-3-pyruvate (IPA) pathway is the major pathway in Pantoea sp. YR343 for IAA production. To better understand IAA biosynthesis and the effects of IAA exposure on cell physiology, we performed proteomics on Pantoea sp. YR343 grown in …


Development Of An Autonomous Mammalian Lux Reporter System, Daniel Michael Close May 2011

Development Of An Autonomous Mammalian Lux Reporter System, Daniel Michael Close

Doctoral Dissertations

Since its characterization, the definitive shortcoming of the bacterial luciferase (lux) bioluminescent reporter system has been its inability to express at a functional level in the eukaryotic cellular background. While recent developments have allowed for lux function in the lower eukaryote Saccharomyces cerevisiae, they have not provided for autonomous function in higher eukaryotes capable of serving as human biomedical proxies. Here it is reported for the first time that, through a process of poly-bicistronic expression of human codon-optimized lux genes, it is possible to autonomously produce a bioluminescent signal directly from mammalian cells. The low background of …