Open Access. Powered by Scholars. Published by Universities.®

Neoplasms

Dartmouth Scholarship

Reproducibility of results

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Analytical, Diagnostic and Therapeutic Techniques and Equipment

Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue Jan 2013

Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1 x 1 cm² square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the …


Near-Infrared Characterization Of Breast Tumors In Vivo Using Spectrally-Constrained Reconstruction, Subhadra Srinivasan, Brian W. Pogue, Ben Brooksby, Shudong Jiang, Hamid Dehghani, Christine Kogel, Wendy A. Wells, Steven P. Poplack, Keith D. Paulsen Oct 2005

Near-Infrared Characterization Of Breast Tumors In Vivo Using Spectrally-Constrained Reconstruction, Subhadra Srinivasan, Brian W. Pogue, Ben Brooksby, Shudong Jiang, Hamid Dehghani, Christine Kogel, Wendy A. Wells, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Multi-wavelength Near-Infrared (NIR) Tomography was utilized in this study to non-invasively quantify physiological parameters of breast tumors using direct spectral reconstruction. Frequency domain NIR measurements were incorporated with a new spectrally constrained direct chromophore and scattering image reconstruction algorithm, which was validated in simulations and experimental phantoms. Images of total hemoglobin, oxygen saturation, water, and scatter parameters were obtained with higher accuracy than previously reported. Using this spectral approach, in vivo NIR images are presented and interpreted through a series of case studies (n=6 subjects) having differing abnormalities. The corresponding mammograms and ultrasound images are also evaluated. Three of six …