Open Access. Powered by Scholars. Published by Universities.®

Neoplasms

Dartmouth College

Neoplasms

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Analytical, Diagnostic and Therapeutic Techniques and Equipment

Mice Null For The Deubiquitinase Usp18 Spontaneously Develop Leiomyosarcomas, Fadzai Chinyengetere, David J. Sekula, Yun Lu, Andrew J. Giustini, Aarti Sanglikar, Masanori Kawakami, Tian Ma Nov 2015

Mice Null For The Deubiquitinase Usp18 Spontaneously Develop Leiomyosarcomas, Fadzai Chinyengetere, David J. Sekula, Yun Lu, Andrew J. Giustini, Aarti Sanglikar, Masanori Kawakami, Tian Ma

Dartmouth Scholarship

USP18 (ubiquitin-specific protease 18) removes ubiquitin-like modifier interferon stimulated gene 15 (ISG15) from conjugated proteins. USP18 null mice in a FVB/N background develop tumors as early as 2 months of age. These tumors are leiomyosarcomas and thus represent a new murine model for this disease.


A Novel Caspase 8 Selective Small Molecule Potentiates Trail-Induced Cell Death, Octavian Bucur, Gabriel Gaidos, Achani Yatawara, Bodvael Pennarun, Chamila Rupasinghe, Jérémie Roux, Stefan Andrei, Bingqian Guo, Alexandra Panaitiu, Maria Pellegrini, Dale Mierke, Roya Khosravi-Far May 2015

A Novel Caspase 8 Selective Small Molecule Potentiates Trail-Induced Cell Death, Octavian Bucur, Gabriel Gaidos, Achani Yatawara, Bodvael Pennarun, Chamila Rupasinghe, Jérémie Roux, Stefan Andrei, Bingqian Guo, Alexandra Panaitiu, Maria Pellegrini, Dale Mierke, Roya Khosravi-Far

Dartmouth Scholarship

Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors (DR4 and DR5) are currently being created for clinical cancer therapy, due to their selective killing of cancer cells and high safety characteristics. However, resistance to TRAIL and other targeted therapies is an important issue facing current cancer research field. An attractive strategy to sensitize resistant malignancies to TRAIL-induced cell death is the design of small molecules that target and promote caspase 8 activation. For the first time, we describe the discovery and characterization of a small molecule that directly binds caspase 8 and enhances its activation when combined with TRAIL, …


Predicting Targeted Drug Combinations Based On Pareto Optimal Patterns Of Coexpression Network Connectivity, Nadia M. Penrod, Casey S. Greene, Jason H. Moore Apr 2014

Predicting Targeted Drug Combinations Based On Pareto Optimal Patterns Of Coexpression Network Connectivity, Nadia M. Penrod, Casey S. Greene, Jason H. Moore

Dartmouth Scholarship

Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced …


Dynamic Dual-Tracer Mri-Guided Fluorescence Tomography To Quantify Receptor Density In Vivo, Scott C. Davis, Kimberley S. Samkoe, Kenneth M. Tichauer, Kristian J. Sexton, Jason R. Gunn, Sophie J. Deharvengt, Tayyaba Hasan, Brian W. Pogue May 2013

Dynamic Dual-Tracer Mri-Guided Fluorescence Tomography To Quantify Receptor Density In Vivo, Scott C. Davis, Kimberley S. Samkoe, Kenneth M. Tichauer, Kristian J. Sexton, Jason R. Gunn, Sophie J. Deharvengt, Tayyaba Hasan, Brian W. Pogue

Dartmouth Scholarship

The up-regulation of cell surface receptors has become a central focus in personalized cancer treatment; however, because of the complex nature of contrast agent pharmacokinetics in tumor tissue, methods to quantify receptor binding in vivo remain elusive. Here, we present a dual-tracer optical technique for noninvasive estimation of specific receptor binding in cancer. A multispectral MRI-coupled fluorescence molecular tomography system was used to image the uptake kinetics of two fluorescent tracers injected simultaneously, one tracer targeted to the receptor of interest and the other tracer a nontargeted reference. These dynamic tracer data were then fit to a dual-tracer compartmental model …