Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Unfolded Protein Response Pathways In Skeletal Muscle Homeostasis., Kyle R. Bohnert Aug 2018

Unfolded Protein Response Pathways In Skeletal Muscle Homeostasis., Kyle R. Bohnert

Electronic Theses and Dissertations

Skeletal muscle mass, contractile properties, and metabolic function are regulated through the coordinated activation of multiple intracellular signaling pathways and genetic reprogramming. The endoplasmic reticulum (ER) plays a pivotal role in protein folding and calcium homeostasis in many cell types, including skeletal muscle. Disruption of calcium levels or accumulation of misfolded proteins in the ER lumen leads to stress, which results in the activation of a signaling network called the unfolded protein response (UPR). Further, recent studies have suggested that in certain conditions, UPR pathways can be activated independent of ER stress. However, the role of ER stress and the …


Immunohistochemical Identification Of Human Skeletal Muscle Macrophages, Kate Kosmac, Bailey D. Peck, R. Grace Walton, Jyothi Mula, Philip A. Kern, Marcas M. Bamman, Richard A. Dennis, Cale A. Jacobs, Christian Lattermann, Darren L. Johnson, Charlotte A. Peterson Jun 2018

Immunohistochemical Identification Of Human Skeletal Muscle Macrophages, Kate Kosmac, Bailey D. Peck, R. Grace Walton, Jyothi Mula, Philip A. Kern, Marcas M. Bamman, Richard A. Dennis, Cale A. Jacobs, Christian Lattermann, Darren L. Johnson, Charlotte A. Peterson

Physical Therapy Faculty Publications

Macrophages have well-characterized roles in skeletal muscle repair and regeneration. Relatively little is known regarding the role of resident macrophages in skeletal muscle homeostasis, extracellular matrix remodeling, growth, metabolism and adaptation to various stimuli including exercise and training. Despite speculation into macrophage contributions during these processes, studies characterizing macrophages in non-injured muscle are limited and methods used to identify macrophages vary. A standardized method for the identification of human resident skeletal muscle macrophages will aide in the characterization of these immune cells and allow for the comparison of results across studies. Here, we present an immunohistochemistry (IHC) protocol, validated by …


Transcriptional Profiling Reveals Extraordinary Diversity Among Skeletal Muscle Tissues, Erin E. Terry, Xiping Zhang, Christy Hoffmann, Laura D. Hughes, Scott A. Lewis, Jiajia Li, Matthew J. Wallace, Lance A. Riley, Collin M. Douglas, Miguel A. Gutierrez-Monreal, Nicholas F. Lahens, Ming C. Gong, Francisco H. Andrade, Karyn A. Esser, Michael E. Hughes May 2018

Transcriptional Profiling Reveals Extraordinary Diversity Among Skeletal Muscle Tissues, Erin E. Terry, Xiping Zhang, Christy Hoffmann, Laura D. Hughes, Scott A. Lewis, Jiajia Li, Matthew J. Wallace, Lance A. Riley, Collin M. Douglas, Miguel A. Gutierrez-Monreal, Nicholas F. Lahens, Ming C. Gong, Francisco H. Andrade, Karyn A. Esser, Michael E. Hughes

Physiology Faculty Publications

Skeletal muscle comprises a family of diverse tissues with highly specialized functions. Many acquired diseases, including HIV and COPD, affect specific muscles while sparing others. Even monogenic muscular dystrophies selectively affect certain muscle groups. These observations suggest that factors intrinsic to muscle tissues influence their resistance to disease. Nevertheless, most studies have not addressed transcriptional diversity among skeletal muscles. Here we use RNAseq to profile mRNA expression in skeletal, smooth, and cardiac muscle tissues from mice and rats. Our data set, MuscleDB, reveals extensive transcriptional diversity, with greater than 50% of transcripts differentially expressed among skeletal muscle tissues. We detect …


Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman Aug 2017

Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman

Lisa Hoffman

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate …


Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman Jun 2011

Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman

Robarts Imaging Publications

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate …