Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Rapid Inversion: Running Animals And Robots Swing Like A Pendulum Under Ledges, Jean-Michel Mongeau, Brian Mcrae, Ardian Jusufi, Paul Birkmeyer, Aaron M. Hoover, Ronald Fearing, Robert J. Full Jul 2012

Rapid Inversion: Running Animals And Robots Swing Like A Pendulum Under Ledges, Jean-Michel Mongeau, Brian Mcrae, Ardian Jusufi, Paul Birkmeyer, Aaron M. Hoover, Ronald Fearing, Robert J. Full

Aaron M. Hoover

Escaping from predators often demands that animals rapidly negotiate complex environments. The smallest animals attain relatively fast speeds with high frequency leg cycling, wing flapping or body undulations, but absolute speeds are slow compared to larger animals. Instead, small animals benefit from the advantages of enhanced maneuverability in part due to scaling. Here, we report a novel behavior in small, legged runners that may facilitate their escape by disappearance from predators. We video recorded cockroaches and geckos rapidly running up an incline toward a ledge, digitized their motion and created a simple model to generalize the behavior. Both species ran …


Hovering Energetics And Thermal Balance In Anna's Hummingbirds (Calypte Anna), Dennis Evangelista, Maria J. Fernandez, Madalyn S. Berns, Aaron M. Hoover, Robert Dudley Jul 2012

Hovering Energetics And Thermal Balance In Anna's Hummingbirds (Calypte Anna), Dennis Evangelista, Maria J. Fernandez, Madalyn S. Berns, Aaron M. Hoover, Robert Dudley

Aaron M. Hoover

We studied the energetics of hover-feeding Anna's hummingbirds, using three different simultaneous techniques: heat loss as estimated via thermal imaging, metabolic rate as measured at a feeder mask using flow-through respirometry, and aerodynamic power estimated from wingbeat kinematic data. These three methods yielded comparable estimates of power output at ambient air temperatures ranging from 18 degrees to 26 degrees C, whereas heat imbalance at higher air temperatures (up to 34 degrees C) suggested loss by mechanisms other than convection and radiation from the body, such as evaporative cooling and enthalpy rise associated with exhaled air and excreted water and convective …