Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Deficient Liver Biosynthesis Of Docosahexaenoic Acid Correlates With Cognitive Impairment In Alzheimer's Disease, Giuseppe Astarita, Kwang-Mook Jung, Nicole C. Berchtold, Vinh Q. Nguyen, Daniel L. Gillen, Elizabeth Head, Carl W. Cotman, Daniele Piomelli Sep 2010

Deficient Liver Biosynthesis Of Docosahexaenoic Acid Correlates With Cognitive Impairment In Alzheimer's Disease, Giuseppe Astarita, Kwang-Mook Jung, Nicole C. Berchtold, Vinh Q. Nguyen, Daniel L. Gillen, Elizabeth Head, Carl W. Cotman, Daniele Piomelli

Sanders-Brown Center on Aging Faculty Publications

Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimer's disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer's disease, compared to control subjects (P = 0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/α-linolenic ratios in temporal cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimer's …


White Matter Diffusion Alterations In Normal Women At Risk Of Alzheimer's Disease, Charles D. Smith, Himachandra Chebrolu, Anders H. Andersen, David A. Powell, Mark A. Lovell, Shuling Xiong, Brian T. Gold Jul 2010

White Matter Diffusion Alterations In Normal Women At Risk Of Alzheimer's Disease, Charles D. Smith, Himachandra Chebrolu, Anders H. Andersen, David A. Powell, Mark A. Lovell, Shuling Xiong, Brian T. Gold

Neurology Faculty Publications

Increased white matter mean diffusivity and decreased fractional anisotropy (FA) has been observed in subjects diagnosed with mild cognitive impairment (MCI) and Alzheimer's disease (AD). We sought to determine whether similar alterations of white matter occur in normal individuals at risk of AD. Diffusion tensor images were acquired in 42 cognitively normal right-handed women with both a family history of dementia and at least one apolipoprotein E4 allele. These were compared with images from 23 normal women without either AD risk factor. Group analyses were performed using tract-based spatial statistics. Reduced FA was observed in the fronto-occipital and inferior temporal …


Pathologically Activated Neuroprotection Via Uncompetitive Blockade Of N-Methyl-D-Aspartate Receptors With Fast Off-Rate By Novel Multifunctional Dimer Bis(Propyl)-Cognitin, Jialie Luo, Wenming Li, Yuming Zhao, Hongjun Fu, Dik-Lung Ma, Jing Tang, Chaoying Li, Robert W. Peoples, Fushun Li, Qinwen Wang, Pingbo Huang, Jun Xia, Yuanping Pang, Yifan Han Jun 2010

Pathologically Activated Neuroprotection Via Uncompetitive Blockade Of N-Methyl-D-Aspartate Receptors With Fast Off-Rate By Novel Multifunctional Dimer Bis(Propyl)-Cognitin, Jialie Luo, Wenming Li, Yuming Zhao, Hongjun Fu, Dik-Lung Ma, Jing Tang, Chaoying Li, Robert W. Peoples, Fushun Li, Qinwen Wang, Pingbo Huang, Jun Xia, Yuanping Pang, Yifan Han

Biomedical Sciences Faculty Research and Publications

Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and γ-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate …


Omega-3 Fatty Acids: Potential Role In The Management Of Early Alzheimer's Disease, Gregory A. Jicha, William R. Markesbery Mar 2010

Omega-3 Fatty Acids: Potential Role In The Management Of Early Alzheimer's Disease, Gregory A. Jicha, William R. Markesbery

Sanders-Brown Center on Aging Faculty Publications

Omega-3 fatty acids are essential for brain growth and development. They play an important role throughout life, as critical modulators of neuronal function and regulation of oxidative stress mechanisms, in brain health and disease. Docosahexanoic acid (DHA), the major omega-3 fatty acid found in neurons, has taken on a central role as a target for therapeutic intervention in Alzheimer's disease (AD). A plethora of in vitro, animal model, and human data, gathered over the past decade, highlight the important role DHA may play in the development of a variety of neurological and psychiatric disorders, including AD. Cross sectional and prospective …


Mir-107 Is Reduced In Alzheimer's Disease Brain Neocortex: Validation Study, Peter T. Nelson, Wang-Xia Wang Jan 2010

Mir-107 Is Reduced In Alzheimer's Disease Brain Neocortex: Validation Study, Peter T. Nelson, Wang-Xia Wang

Pathology and Laboratory Medicine Faculty Publications

MiR-107 is a microRNA (miRNA) that we reported previously to have decreased expression in the temporal cortical gray matter early in the progression of Alzheimer's disease (AD). Here we study a new group of well-characterized human temporal cortex samples (N=19). MiR-107 expression was assessed, normalized to miR-124 and let-7a. Correlation was observed between decreased miR-107 expression and increased neuritic plaque counts (P< 0.05) and neurofibrillary tangle counts (P< 0.02) in adjacent brain tissue. Adjusted miR-107 and BACE1 mRNA levels tended to correlate negatively (trend with regression P< 0.07). In sum, miR-107 expression tends to be lower relative to other miRNAs as AD progresses.


Genetic Connections Between Neurological Disorders And Cholesterol Metabolism, Ingemar Bjorkhem, Valerio Leoni, Steve Meaney Jan 2010

Genetic Connections Between Neurological Disorders And Cholesterol Metabolism, Ingemar Bjorkhem, Valerio Leoni, Steve Meaney

Articles

Cholesterol is an essential component of both the peripheral and central nervous systems of mammals. Over the last decade, evidence has accumulated that disturbances in cholesterol metabolism are associated with the development of various neurological conditions. In addition to genetically defined defects in cholesterol synthesis, which will be covered in another review in this Thematic Series, defects in cholesterol metabolism (cerebrotendinous xanthomatosis) and intracellular transport (Niemann Pick Syndrome) lead to neurological disease. A subform of hereditary spastic paresis (type SPG5) and Huntington's disease are neurological diseases with mutations in genes that are of importance for cholesterol metabolism. Neurodegeneration is generally …